叶绿素通过诱导叶绿体损伤和细胞程序性死亡抑制拟南芥嫩枝的生长

IF 4 3区 生物学 Q1 PLANT SCIENCES Journal of plant physiology Pub Date : 2024-09-19 DOI:10.1016/j.jplph.2024.154354
Dijana Smailagić , Jelena Dragišić Maksimović , Marija Marin , Sofija Stupar , Slavica Ninković , Nevena Banjac , Mariana Stanišić
{"title":"叶绿素通过诱导叶绿体损伤和细胞程序性死亡抑制拟南芥嫩枝的生长","authors":"Dijana Smailagić ,&nbsp;Jelena Dragišić Maksimović ,&nbsp;Marija Marin ,&nbsp;Sofija Stupar ,&nbsp;Slavica Ninković ,&nbsp;Nevena Banjac ,&nbsp;Mariana Stanišić","doi":"10.1016/j.jplph.2024.154354","DOIUrl":null,"url":null,"abstract":"<div><div>Phloretin is a key secondary metabolite produced by apple trees. Known for its strong antioxidant properties, this dihydrochalcone has been extensively studied in animals but less so in plants. Recently, we identified phloretin as a phytotoxic allelochemical that inhibits growth in the model plant Arabidopsis by disrupting auxin metabolism and distribution in the roots. In this study, we found that phloretin significantly hinders the growth of Arabidopsis seedlings' aerial parts after a short-term treatment (10 days) and causes their decay after long-term exposure (28 days). These effects result from ultrastructural damage in the mesophyll cells of the leaves, including chloroplast displacement and swelling, lesions, and alterations in thylakoid and cell wall organization. Interestingly, phloretin-treated plants showed a decrease in malondialdehyde levels and antioxidant enzyme activities, while hydrogen peroxide and proline levels remained unchanged. This suggests that phloretin-induced chlorosis and seedling decay are not due to oxidative stress but rather to severe chloroplast structural damage, leading to inefficient photosynthesis, starch degradation, starvation, and activation of micro- and macroautophagic processes for self-preservation. Ultimately, these processes result in programmed cell death. These new insights into the phytotoxic effects of phloretin on Arabidopsis shoots could pave the way for future research into phloretin as a potential multitarget bioherbicide and enhance our understanding of autoallelopathy in apple trees.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phloretin inhibits the growth of Arabidopsis shoots by inducing chloroplast damage and programmed cell death\",\"authors\":\"Dijana Smailagić ,&nbsp;Jelena Dragišić Maksimović ,&nbsp;Marija Marin ,&nbsp;Sofija Stupar ,&nbsp;Slavica Ninković ,&nbsp;Nevena Banjac ,&nbsp;Mariana Stanišić\",\"doi\":\"10.1016/j.jplph.2024.154354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phloretin is a key secondary metabolite produced by apple trees. Known for its strong antioxidant properties, this dihydrochalcone has been extensively studied in animals but less so in plants. Recently, we identified phloretin as a phytotoxic allelochemical that inhibits growth in the model plant Arabidopsis by disrupting auxin metabolism and distribution in the roots. In this study, we found that phloretin significantly hinders the growth of Arabidopsis seedlings' aerial parts after a short-term treatment (10 days) and causes their decay after long-term exposure (28 days). These effects result from ultrastructural damage in the mesophyll cells of the leaves, including chloroplast displacement and swelling, lesions, and alterations in thylakoid and cell wall organization. Interestingly, phloretin-treated plants showed a decrease in malondialdehyde levels and antioxidant enzyme activities, while hydrogen peroxide and proline levels remained unchanged. This suggests that phloretin-induced chlorosis and seedling decay are not due to oxidative stress but rather to severe chloroplast structural damage, leading to inefficient photosynthesis, starch degradation, starvation, and activation of micro- and macroautophagic processes for self-preservation. Ultimately, these processes result in programmed cell death. These new insights into the phytotoxic effects of phloretin on Arabidopsis shoots could pave the way for future research into phloretin as a potential multitarget bioherbicide and enhance our understanding of autoallelopathy in apple trees.</div></div>\",\"PeriodicalId\":16808,\"journal\":{\"name\":\"Journal of plant physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0176161724001858\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724001858","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

Phloretin 是苹果树产生的一种重要次生代谢物。这种二氢查尔酮因其强大的抗氧化特性而闻名,已在动物中进行了广泛研究,但在植物中研究较少。最近,我们发现phloretin 是一种具有植物毒性的等位化学物质,它通过破坏植物根部的辅素代谢和分布来抑制模式植物拟南芥的生长。在这项研究中,我们发现在短期处理(10 天)后,phloretin 会明显阻碍拟南芥幼苗气生部分的生长,而在长期接触(28 天)后,phloretin 会导致其腐烂。这些影响源于叶片中叶细胞的超微结构损伤,包括叶绿体移位和肿胀、病变以及类木质和细胞壁组织的改变。有趣的是,经氯雷他定处理的植物丙二醛水平和抗氧化酶活性都有所下降,而过氧化氢和脯氨酸水平则保持不变。这表明,phloretin 诱导的叶绿素沉降和幼苗腐烂不是由于氧化应激,而是由于叶绿体结构严重受损,导致光合作用效率低下、淀粉降解、饥饿以及为自我保护而激活微观和宏观自噬过程。这些过程最终导致细胞程序性死亡。这些关于拟南芥嫩枝上植物毒素作用的新见解,可以为今后将phloretin作为一种潜在的多靶标生物杀草剂进行研究铺平道路,并增强我们对苹果树平行病理学的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phloretin inhibits the growth of Arabidopsis shoots by inducing chloroplast damage and programmed cell death
Phloretin is a key secondary metabolite produced by apple trees. Known for its strong antioxidant properties, this dihydrochalcone has been extensively studied in animals but less so in plants. Recently, we identified phloretin as a phytotoxic allelochemical that inhibits growth in the model plant Arabidopsis by disrupting auxin metabolism and distribution in the roots. In this study, we found that phloretin significantly hinders the growth of Arabidopsis seedlings' aerial parts after a short-term treatment (10 days) and causes their decay after long-term exposure (28 days). These effects result from ultrastructural damage in the mesophyll cells of the leaves, including chloroplast displacement and swelling, lesions, and alterations in thylakoid and cell wall organization. Interestingly, phloretin-treated plants showed a decrease in malondialdehyde levels and antioxidant enzyme activities, while hydrogen peroxide and proline levels remained unchanged. This suggests that phloretin-induced chlorosis and seedling decay are not due to oxidative stress but rather to severe chloroplast structural damage, leading to inefficient photosynthesis, starch degradation, starvation, and activation of micro- and macroautophagic processes for self-preservation. Ultimately, these processes result in programmed cell death. These new insights into the phytotoxic effects of phloretin on Arabidopsis shoots could pave the way for future research into phloretin as a potential multitarget bioherbicide and enhance our understanding of autoallelopathy in apple trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of plant physiology
Journal of plant physiology 生物-植物科学
CiteScore
7.20
自引率
4.70%
发文量
196
审稿时长
32 days
期刊介绍: The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication. The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.
期刊最新文献
A simple, cost-effective, and efficient method for screening CRISPR/Cas9 mutants in plants Alkaline tolerance in plants: The AT1 gene and beyond Developmental-specific regulation promotes the free amino acids accumulation in chlorotic tea plants (Camellia sinensis) SPOTLIGHT: Orchestrating nitrogen metabolism: Histone modifications and its interplay with the biological clock Tripartite interactions between grapevine, viruses, and arbuscular mycorrhizal fungi provide insights into modulation of oxidative stress responses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1