填补 MODIS 和 CMEMS 提供的印度尼西亚亚齐水域叶绿素-a 卫星数据的空白

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-27 DOI:10.1016/j.ejrs.2024.08.004
M.N. Hidayat , R. Wafdan , M. Ramli , Z.A. Muchlisin , S. Rizal
{"title":"填补 MODIS 和 CMEMS 提供的印度尼西亚亚齐水域叶绿素-a 卫星数据的空白","authors":"M.N. Hidayat ,&nbsp;R. Wafdan ,&nbsp;M. Ramli ,&nbsp;Z.A. Muchlisin ,&nbsp;S. Rizal","doi":"10.1016/j.ejrs.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><div>The motivation behind our study is to identify a robust method to enhance the accuracy of missing data, particularly chlorophyll-a data, which often goes undetected due to various factors. This study analyzes chlorophyll-a concentrations and sea level changes due to tides using three methods: Linear Interpolation, Fillgaps, and Modified Fillgaps. Two experiments were conducted: Experiment I involved random data removal (60% and 70%), and Experiment II combined sequential and random data removal (25% sequentially on the right, 35% and 45% randomly on the left). In Experiment I, the Modified Fillgaps method showed high correlation coefficients (up to 0.96) between original and reconstructed data, demonstrating its effectiveness in accurately filling significant data gaps. This method also exhibited low Root Mean Square Error and Mean Absolute Error values, confirming its predictive precision. In Experiment II, despite structured and realistic data loss patterns, the method maintained high correlation and low prediction errors, with low Normalized Root Mean Squared Error and Mean Absolute Percentage Error values, further validating its reliability. Additionally, the method excelled in two-dimensional chlorophyll-a maps, outperforming Linear Interpolation and Fillgaps methods in scenarios with 50% and 60% data loss, achieving higher correlation and lower prediction errors. These findings are crucial for environmental and climatological studies relying on satellite-derived data, confirming the Modified Fillgaps method as the most reliable and effective for handling significant data loss in chlorophyll-a map analyses. Future research should explore its application to other environmental data types and more complex data loss patterns.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gap filling of missing satellite data from MODIS and CMEMS for chlorophyll-a in the waters of Aceh, Indonesia\",\"authors\":\"M.N. Hidayat ,&nbsp;R. Wafdan ,&nbsp;M. Ramli ,&nbsp;Z.A. Muchlisin ,&nbsp;S. Rizal\",\"doi\":\"10.1016/j.ejrs.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The motivation behind our study is to identify a robust method to enhance the accuracy of missing data, particularly chlorophyll-a data, which often goes undetected due to various factors. This study analyzes chlorophyll-a concentrations and sea level changes due to tides using three methods: Linear Interpolation, Fillgaps, and Modified Fillgaps. Two experiments were conducted: Experiment I involved random data removal (60% and 70%), and Experiment II combined sequential and random data removal (25% sequentially on the right, 35% and 45% randomly on the left). In Experiment I, the Modified Fillgaps method showed high correlation coefficients (up to 0.96) between original and reconstructed data, demonstrating its effectiveness in accurately filling significant data gaps. This method also exhibited low Root Mean Square Error and Mean Absolute Error values, confirming its predictive precision. In Experiment II, despite structured and realistic data loss patterns, the method maintained high correlation and low prediction errors, with low Normalized Root Mean Squared Error and Mean Absolute Percentage Error values, further validating its reliability. Additionally, the method excelled in two-dimensional chlorophyll-a maps, outperforming Linear Interpolation and Fillgaps methods in scenarios with 50% and 60% data loss, achieving higher correlation and lower prediction errors. These findings are crucial for environmental and climatological studies relying on satellite-derived data, confirming the Modified Fillgaps method as the most reliable and effective for handling significant data loss in chlorophyll-a map analyses. Future research should explore its application to other environmental data types and more complex data loss patterns.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S111098232400067X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S111098232400067X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的动机是找出一种稳健的方法来提高缺失数据的准确性,特别是叶绿素-a 数据,因为这些数据经常由于各种因素而未被检测到。本研究使用三种方法分析了叶绿素-a 浓度和潮汐引起的海平面变化:线性插值法、填充法和修正填充法。共进行了两次实验:实验 I 涉及随机数据移除(60% 和 70%),实验 II 结合了顺序和随机数据移除(右侧顺序移除 25%,左侧随机移除 35% 和 45%)。在实验 I 中,"修正填充间隙 "方法在原始数据和重建数据之间显示出较高的相关系数(高达 0.96),证明了该方法在准确填补重要数据间隙方面的有效性。该方法还显示出较低的均方根误差和平均绝对误差,证实了其预测精度。在实验 II 中,尽管出现了结构化和现实的数据丢失模式,但该方法仍保持了高相关性和低预测误差,归一化均方根误差和平均绝对百分比误差值都很低,进一步验证了其可靠性。此外,该方法在二维叶绿素-a 地图中表现出色,在数据丢失 50% 和 60% 的情况下,其相关性更高,预测误差更小,优于线性插值法和 Fillgaps 法。这些发现对于依赖卫星数据的环境和气候学研究至关重要,证实了修正的 Fillgaps 方法是处理叶绿素-a 地图分析中大量数据丢失的最可靠、最有效的方法。未来的研究应探索该方法在其他环境数据类型和更复杂的数据丢失模式中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gap filling of missing satellite data from MODIS and CMEMS for chlorophyll-a in the waters of Aceh, Indonesia
The motivation behind our study is to identify a robust method to enhance the accuracy of missing data, particularly chlorophyll-a data, which often goes undetected due to various factors. This study analyzes chlorophyll-a concentrations and sea level changes due to tides using three methods: Linear Interpolation, Fillgaps, and Modified Fillgaps. Two experiments were conducted: Experiment I involved random data removal (60% and 70%), and Experiment II combined sequential and random data removal (25% sequentially on the right, 35% and 45% randomly on the left). In Experiment I, the Modified Fillgaps method showed high correlation coefficients (up to 0.96) between original and reconstructed data, demonstrating its effectiveness in accurately filling significant data gaps. This method also exhibited low Root Mean Square Error and Mean Absolute Error values, confirming its predictive precision. In Experiment II, despite structured and realistic data loss patterns, the method maintained high correlation and low prediction errors, with low Normalized Root Mean Squared Error and Mean Absolute Percentage Error values, further validating its reliability. Additionally, the method excelled in two-dimensional chlorophyll-a maps, outperforming Linear Interpolation and Fillgaps methods in scenarios with 50% and 60% data loss, achieving higher correlation and lower prediction errors. These findings are crucial for environmental and climatological studies relying on satellite-derived data, confirming the Modified Fillgaps method as the most reliable and effective for handling significant data loss in chlorophyll-a map analyses. Future research should explore its application to other environmental data types and more complex data loss patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1