{"title":"非充填ℓ-adic GKZ 超几何层的特征周期","authors":"Peijiang Liu","doi":"10.1016/j.jnt.2024.07.014","DOIUrl":null,"url":null,"abstract":"<div><div>An <em>ℓ</em>-adic GKZ hypergeometric sheaf is defined analogously to a GKZ hypergeometric <span><math><mi>D</mi></math></span>-module. We introduce an algorithm of computing the characteristic cycle of an <em>ℓ</em>-adic GKZ hypergeometric sheaf of certain type. Our strategy is to apply a formula of the characteristic cycle of the direct image of an <em>ℓ</em>-adic sheaf. We verify the requirements for the formula to hold by calculating the dimension of the direct image of a certain closed conical subset of cotangent bundle. We also define an <em>ℓ</em>-adic GKZ-type sheaf whose specialization tensored with a constant sheaf is isomorphic to an <em>ℓ</em>-adic non-confluent GKZ hypergeometric sheaf. On the other hand, the topological model of an <em>ℓ</em>-adic GKZ-type sheaf is isomorphic to the image by the de Rham functor of a non-confluent GKZ hypergeometric <span><math><mi>D</mi></math></span>-module whose characteristic cycle has been calculated. This gives an easier way to determine the characteristic cycle of an <em>ℓ</em>-adic non-confluent GKZ hypergeometric sheaf of certain type.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"267 ","pages":"Pages 1-33"},"PeriodicalIF":0.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The characteristic cycle of a non-confluent ℓ-adic GKZ hypergeometric sheaf\",\"authors\":\"Peijiang Liu\",\"doi\":\"10.1016/j.jnt.2024.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An <em>ℓ</em>-adic GKZ hypergeometric sheaf is defined analogously to a GKZ hypergeometric <span><math><mi>D</mi></math></span>-module. We introduce an algorithm of computing the characteristic cycle of an <em>ℓ</em>-adic GKZ hypergeometric sheaf of certain type. Our strategy is to apply a formula of the characteristic cycle of the direct image of an <em>ℓ</em>-adic sheaf. We verify the requirements for the formula to hold by calculating the dimension of the direct image of a certain closed conical subset of cotangent bundle. We also define an <em>ℓ</em>-adic GKZ-type sheaf whose specialization tensored with a constant sheaf is isomorphic to an <em>ℓ</em>-adic non-confluent GKZ hypergeometric sheaf. On the other hand, the topological model of an <em>ℓ</em>-adic GKZ-type sheaf is isomorphic to the image by the de Rham functor of a non-confluent GKZ hypergeometric <span><math><mi>D</mi></math></span>-module whose characteristic cycle has been calculated. This gives an easier way to determine the characteristic cycle of an <em>ℓ</em>-adic non-confluent GKZ hypergeometric sheaf of certain type.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"267 \",\"pages\":\"Pages 1-33\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001872\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001872","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The characteristic cycle of a non-confluent ℓ-adic GKZ hypergeometric sheaf
An ℓ-adic GKZ hypergeometric sheaf is defined analogously to a GKZ hypergeometric -module. We introduce an algorithm of computing the characteristic cycle of an ℓ-adic GKZ hypergeometric sheaf of certain type. Our strategy is to apply a formula of the characteristic cycle of the direct image of an ℓ-adic sheaf. We verify the requirements for the formula to hold by calculating the dimension of the direct image of a certain closed conical subset of cotangent bundle. We also define an ℓ-adic GKZ-type sheaf whose specialization tensored with a constant sheaf is isomorphic to an ℓ-adic non-confluent GKZ hypergeometric sheaf. On the other hand, the topological model of an ℓ-adic GKZ-type sheaf is isomorphic to the image by the de Rham functor of a non-confluent GKZ hypergeometric -module whose characteristic cycle has been calculated. This gives an easier way to determine the characteristic cycle of an ℓ-adic non-confluent GKZ hypergeometric sheaf of certain type.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.