{"title":"Fe(III)配合物的合成、抗癌活性和作用机制","authors":"Xiaoqian Zhao, Ying Qian, Shanshan Hu, Yingbiao Tian","doi":"10.1002/ddr.22264","DOIUrl":null,"url":null,"abstract":"<p>To inhibit the growth and metastasis of triple-negative breast cancer (TNBC), two Fe(III) thiosemicarbazone complexes (<b>Fe1</b> and <b>Fe2</b>) were designed and synthesized. The structures of the Fe(III) complexes were characterized by single crystal X-ray diffraction. The antiproliferative activity of <b>Fe1</b> and <b>Fe2</b> against four cancer lines (MDA-MB-231, T98G, HepG2, 143B) and human renal proximal tubular epithelial cell line (HK-2) was evaluated by MTT assay. Among all cells, <b>Fe2</b> showed significant cytotoxicity to TNBC cells (MDA-MB-231), with an IC<sub>50</sub> value of 12.38 μM. Furthermore, <b>Fe2</b> showed less toxicity to HK-2 cells. The two Fe(III) complexes can produce excess of reactive oxygen species, decrease of mitochondrial membrane potential, and induce DNA damage, then lead to apoptosis of MDA-MB-231 cells. In addition, <b>Fe1</b> and <b>Fe2</b> can also inhibit migration and invasion of MDA-MB-231 cells. This study provides guidance for the development of metal complexes that inhibit the growth and metastasis of TNBC.</p>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"85 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, anticancer activity and mechanism of action of Fe(III) complexes\",\"authors\":\"Xiaoqian Zhao, Ying Qian, Shanshan Hu, Yingbiao Tian\",\"doi\":\"10.1002/ddr.22264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To inhibit the growth and metastasis of triple-negative breast cancer (TNBC), two Fe(III) thiosemicarbazone complexes (<b>Fe1</b> and <b>Fe2</b>) were designed and synthesized. The structures of the Fe(III) complexes were characterized by single crystal X-ray diffraction. The antiproliferative activity of <b>Fe1</b> and <b>Fe2</b> against four cancer lines (MDA-MB-231, T98G, HepG2, 143B) and human renal proximal tubular epithelial cell line (HK-2) was evaluated by MTT assay. Among all cells, <b>Fe2</b> showed significant cytotoxicity to TNBC cells (MDA-MB-231), with an IC<sub>50</sub> value of 12.38 μM. Furthermore, <b>Fe2</b> showed less toxicity to HK-2 cells. The two Fe(III) complexes can produce excess of reactive oxygen species, decrease of mitochondrial membrane potential, and induce DNA damage, then lead to apoptosis of MDA-MB-231 cells. In addition, <b>Fe1</b> and <b>Fe2</b> can also inhibit migration and invasion of MDA-MB-231 cells. This study provides guidance for the development of metal complexes that inhibit the growth and metastasis of TNBC.</p>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"85 7\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.22264\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.22264","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Synthesis, anticancer activity and mechanism of action of Fe(III) complexes
To inhibit the growth and metastasis of triple-negative breast cancer (TNBC), two Fe(III) thiosemicarbazone complexes (Fe1 and Fe2) were designed and synthesized. The structures of the Fe(III) complexes were characterized by single crystal X-ray diffraction. The antiproliferative activity of Fe1 and Fe2 against four cancer lines (MDA-MB-231, T98G, HepG2, 143B) and human renal proximal tubular epithelial cell line (HK-2) was evaluated by MTT assay. Among all cells, Fe2 showed significant cytotoxicity to TNBC cells (MDA-MB-231), with an IC50 value of 12.38 μM. Furthermore, Fe2 showed less toxicity to HK-2 cells. The two Fe(III) complexes can produce excess of reactive oxygen species, decrease of mitochondrial membrane potential, and induce DNA damage, then lead to apoptosis of MDA-MB-231 cells. In addition, Fe1 and Fe2 can also inhibit migration and invasion of MDA-MB-231 cells. This study provides guidance for the development of metal complexes that inhibit the growth and metastasis of TNBC.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.