黄河中游新近纪-第四纪河道演变与河源变迁

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Geophysical Research: Earth Surface Pub Date : 2024-09-27 DOI:10.1029/2023JF007532
Jianguo Xiong, Peizhen Zhang, Chenglong Deng, Vincenzo Picotti, Hao Liang, Zhikun Ren, Weitao Wang, Huan Kang, Qingri Liu, Xudong Zhao, Xiuli Zhang, Yihui Zhang, Youli Li, Huiping Zhang, Xitao Zhao
{"title":"黄河中游新近纪-第四纪河道演变与河源变迁","authors":"Jianguo Xiong,&nbsp;Peizhen Zhang,&nbsp;Chenglong Deng,&nbsp;Vincenzo Picotti,&nbsp;Hao Liang,&nbsp;Zhikun Ren,&nbsp;Weitao Wang,&nbsp;Huan Kang,&nbsp;Qingri Liu,&nbsp;Xudong Zhao,&nbsp;Xiuli Zhang,&nbsp;Yihui Zhang,&nbsp;Youli Li,&nbsp;Huiping Zhang,&nbsp;Xitao Zhao","doi":"10.1029/2023JF007532","DOIUrl":null,"url":null,"abstract":"<p>The formation age of the middle Yellow River and the existence of a northward-flowing river have been fiercely debated. The age distribution of detrital zircon varied spatiotemporally and produced contradictory provenance interpretations. The Jinshaan Gorge, the main part of the middle Yellow River and key to studying fluvial evolution and clarifying disputes, developed its topography during the late Cenozoic. In this study, we systematically review the Cenozoic tectonic evolution of the North China Craton, perform detrital zircon U–Pb dating in the Neogene−Quaternary sediments and investigate the topography along the Jinshaan Gorge, and the sedimentology and chronological framework of these sediments. We propose that the Gorge of the middle Yellow River could have developed since the Neogene, controlled by the tectono-geomorphologic evolution of the North China Craton in a dominantly extensional environment. No evidence supports a northward-flowing river during the Early Pleistocene or even earlier in the Jinshaan Gorge. We attribute the provenance variations of the Cenozoic sediments to detrital mixing of diverse geological units, local and distant, and especially highlight the systematic provenance shift between the Neogene and Quaternary sediments caused by bedrock downcutting and recycling aeolian sediments. The increased 1.5−0.33 Ga component of the lower Yellow River during the Early Pleistocene was likely caused by enhanced loess accumulation and should not be individually used as a proxy for the Yellow River formation. We emphasize the significance of a comprehensive study of river evolution.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 10","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neogene–Quaternary Channel Evolution and Provenance Shift of the Middle Yellow River\",\"authors\":\"Jianguo Xiong,&nbsp;Peizhen Zhang,&nbsp;Chenglong Deng,&nbsp;Vincenzo Picotti,&nbsp;Hao Liang,&nbsp;Zhikun Ren,&nbsp;Weitao Wang,&nbsp;Huan Kang,&nbsp;Qingri Liu,&nbsp;Xudong Zhao,&nbsp;Xiuli Zhang,&nbsp;Yihui Zhang,&nbsp;Youli Li,&nbsp;Huiping Zhang,&nbsp;Xitao Zhao\",\"doi\":\"10.1029/2023JF007532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The formation age of the middle Yellow River and the existence of a northward-flowing river have been fiercely debated. The age distribution of detrital zircon varied spatiotemporally and produced contradictory provenance interpretations. The Jinshaan Gorge, the main part of the middle Yellow River and key to studying fluvial evolution and clarifying disputes, developed its topography during the late Cenozoic. In this study, we systematically review the Cenozoic tectonic evolution of the North China Craton, perform detrital zircon U–Pb dating in the Neogene−Quaternary sediments and investigate the topography along the Jinshaan Gorge, and the sedimentology and chronological framework of these sediments. We propose that the Gorge of the middle Yellow River could have developed since the Neogene, controlled by the tectono-geomorphologic evolution of the North China Craton in a dominantly extensional environment. No evidence supports a northward-flowing river during the Early Pleistocene or even earlier in the Jinshaan Gorge. We attribute the provenance variations of the Cenozoic sediments to detrital mixing of diverse geological units, local and distant, and especially highlight the systematic provenance shift between the Neogene and Quaternary sediments caused by bedrock downcutting and recycling aeolian sediments. The increased 1.5−0.33 Ga component of the lower Yellow River during the Early Pleistocene was likely caused by enhanced loess accumulation and should not be individually used as a proxy for the Yellow River formation. We emphasize the significance of a comprehensive study of river evolution.</p>\",\"PeriodicalId\":15887,\"journal\":{\"name\":\"Journal of Geophysical Research: Earth Surface\",\"volume\":\"129 10\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Earth Surface\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023JF007532\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JF007532","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

关于黄河中游的形成年代和是否存在北流河的问题一直存在激烈的争论。碎屑锆石的年龄分布在时空上存在差异,并产生了相互矛盾的产地解释。金沙江峡谷是黄河中游的主要部分,也是研究河流演变和澄清争议的关键,其地形发育于新生代晚期。本研究系统回顾了华北克拉通新生代构造演化,对新元古代-第四纪沉积物进行了锆英石U-Pb测年,研究了金沙江峡谷沿岸的地形地貌,以及沉积物的沉积学和年代学框架。我们提出,黄河中游峡谷可能自新近纪开始发育,受华北克拉通构造-地貌演化的控制,处于以伸展为主的环境中。没有证据表明金沙江峡谷在早更新世甚至更早时期就有北流的河流。我们将新生代沉积物的产状变化归因于当地和远处不同地质单元的碎屑混合,并特别强调了基岩下切和风化沉积物循环造成的新近纪沉积物和第四纪沉积物之间的系统性产状转变。早更新世期间黄河下游 1.5-0.33 Ga 分量的增加很可能是由于黄土堆积增强所致,不应单独作为黄河形成的代表。我们强调对河流演变进行全面研究的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neogene–Quaternary Channel Evolution and Provenance Shift of the Middle Yellow River

The formation age of the middle Yellow River and the existence of a northward-flowing river have been fiercely debated. The age distribution of detrital zircon varied spatiotemporally and produced contradictory provenance interpretations. The Jinshaan Gorge, the main part of the middle Yellow River and key to studying fluvial evolution and clarifying disputes, developed its topography during the late Cenozoic. In this study, we systematically review the Cenozoic tectonic evolution of the North China Craton, perform detrital zircon U–Pb dating in the Neogene−Quaternary sediments and investigate the topography along the Jinshaan Gorge, and the sedimentology and chronological framework of these sediments. We propose that the Gorge of the middle Yellow River could have developed since the Neogene, controlled by the tectono-geomorphologic evolution of the North China Craton in a dominantly extensional environment. No evidence supports a northward-flowing river during the Early Pleistocene or even earlier in the Jinshaan Gorge. We attribute the provenance variations of the Cenozoic sediments to detrital mixing of diverse geological units, local and distant, and especially highlight the systematic provenance shift between the Neogene and Quaternary sediments caused by bedrock downcutting and recycling aeolian sediments. The increased 1.5−0.33 Ga component of the lower Yellow River during the Early Pleistocene was likely caused by enhanced loess accumulation and should not be individually used as a proxy for the Yellow River formation. We emphasize the significance of a comprehensive study of river evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
期刊最新文献
Field Validation of the Superelevation Method for Debris-Flow Velocity Estimation Using High-Resolution Lidar and UAV Data Influence of Lithology and Biota on Stream Erosivity and Drainage Density in a Semi-Arid Landscape, Central Chile Erosional Response to Pleistocene Climate Changes in the Brazilian Highlands Dynamic Controls on the Asymmetry of Mouth Bars: Role of Alongshore Currents Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1