随机对照试验线性调整的精确偏差校正

IF 6.6 1区 经济学 Q1 ECONOMICS Econometrica Pub Date : 2024-09-27 DOI:10.3982/ECTA20289
Haoge Chang, Joel A. Middleton, P. M. Aronow
{"title":"随机对照试验线性调整的精确偏差校正","authors":"Haoge Chang,&nbsp;Joel A. Middleton,&nbsp;P. M. Aronow","doi":"10.3982/ECTA20289","DOIUrl":null,"url":null,"abstract":"<p>Freedman (2008a,b) showed that the linear regression estimator is biased for the analysis of randomized controlled trials under the randomization model. Under Freedman's assumptions, we derive exact closed-form bias corrections for the linear regression estimator. We show that the limiting distribution of the bias corrected estimator is identical to the uncorrected estimator. Taken together with results from Lin (2013), our results show that Freedman's theoretical arguments against the use of regression adjustment can be resolved with minor modifications to practice.</p>","PeriodicalId":50556,"journal":{"name":"Econometrica","volume":"92 5","pages":"1503-1519"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact Bias Correction for Linear Adjustment of Randomized Controlled Trials\",\"authors\":\"Haoge Chang,&nbsp;Joel A. Middleton,&nbsp;P. M. Aronow\",\"doi\":\"10.3982/ECTA20289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Freedman (2008a,b) showed that the linear regression estimator is biased for the analysis of randomized controlled trials under the randomization model. Under Freedman's assumptions, we derive exact closed-form bias corrections for the linear regression estimator. We show that the limiting distribution of the bias corrected estimator is identical to the uncorrected estimator. Taken together with results from Lin (2013), our results show that Freedman's theoretical arguments against the use of regression adjustment can be resolved with minor modifications to practice.</p>\",\"PeriodicalId\":50556,\"journal\":{\"name\":\"Econometrica\",\"volume\":\"92 5\",\"pages\":\"1503-1519\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrica\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.3982/ECTA20289\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrica","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.3982/ECTA20289","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

弗里德曼(2008a,b)的研究表明,在随机化模型下,线性回归估计器对随机对照试验的分析是有偏差的。根据弗里德曼的假设,我们推导出了线性回归估计器的精确闭式偏差修正。我们证明,偏差修正估计值的极限分布与未修正估计值相同。结合 Lin(2013)的研究结果,我们的研究结果表明,Freedman 反对使用回归调整的理论论点可以在实践中稍作修改即可解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exact Bias Correction for Linear Adjustment of Randomized Controlled Trials

Freedman (2008a,b) showed that the linear regression estimator is biased for the analysis of randomized controlled trials under the randomization model. Under Freedman's assumptions, we derive exact closed-form bias corrections for the linear regression estimator. We show that the limiting distribution of the bias corrected estimator is identical to the uncorrected estimator. Taken together with results from Lin (2013), our results show that Freedman's theoretical arguments against the use of regression adjustment can be resolved with minor modifications to practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrica
Econometrica 社会科学-数学跨学科应用
CiteScore
11.00
自引率
3.30%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Econometrica publishes original articles in all branches of economics - theoretical and empirical, abstract and applied, providing wide-ranging coverage across the subject area. It promotes studies that aim at the unification of the theoretical-quantitative and the empirical-quantitative approach to economic problems and that are penetrated by constructive and rigorous thinking. It explores a unique range of topics each year - from the frontier of theoretical developments in many new and important areas, to research on current and applied economic problems, to methodologically innovative, theoretical and applied studies in econometrics. Econometrica maintains a long tradition that submitted articles are refereed carefully and that detailed and thoughtful referee reports are provided to the author as an aid to scientific research, thus ensuring the high calibre of papers found in Econometrica. An international board of editors, together with the referees it has selected, has succeeded in substantially reducing editorial turnaround time, thereby encouraging submissions of the highest quality. We strongly encourage recent Ph. D. graduates to submit their work to Econometrica. Our policy is to take into account the fact that recent graduates are less experienced in the process of writing and submitting papers.
期刊最新文献
Frontmatter of Econometrica Vol. 92 Iss. 6 The Impacts of Managerial Autonomy on Firm Outcomes Matching and Agglomeration: Theory and Evidence From Japanese Firm-to-Firm Trade Privacy-Preserving Signals Stationary Social Learning in a Changing Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1