{"title":"分子断裂交界处:氧化还原转化的舞台","authors":"Ishita Neogi, Haritha S, Anjitha Sebastian, Simi Achankunju, Gourab Mohanty, Keshaba Nanda Parida","doi":"10.1002/ejoc.202400980","DOIUrl":null,"url":null,"abstract":"An exceptionally brilliant strategy to miniaturize electronic devices is to employ a single‐molecule between two electrodes for carrier conduction at single‐molecule break junctions (SMBJ). To understand the intrinsic mechanisms of operation at these junctions, extremely crucial is to study physical, chemical, and electrochemical properties employing single‐molecules at SMBJs. Further, redox‐based transformations at the nano‐junction could be achieved electrochemically to allow efficient switching between different redox states of a single‐molecule, showcasing the possibility of maneuvering transport properties with on‐off states of the molecule. Herein, are presented the fundamentals of SMBJs, and the electrochemically influenced transformations or switching of organic molecules pursued at SMBJs. Such an understanding of electrochemical phenomena at the nanoscale dimension could bridge the knowledge gap between macroscopic electronic circuits and single‐molecule electronic circuits, whereby the feasibility of switching between the states could maneuver the electronic properties as well as other photophysical parameters.","PeriodicalId":167,"journal":{"name":"European Journal of Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Break Junction: A Stage for Redox Transformations\",\"authors\":\"Ishita Neogi, Haritha S, Anjitha Sebastian, Simi Achankunju, Gourab Mohanty, Keshaba Nanda Parida\",\"doi\":\"10.1002/ejoc.202400980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An exceptionally brilliant strategy to miniaturize electronic devices is to employ a single‐molecule between two electrodes for carrier conduction at single‐molecule break junctions (SMBJ). To understand the intrinsic mechanisms of operation at these junctions, extremely crucial is to study physical, chemical, and electrochemical properties employing single‐molecules at SMBJs. Further, redox‐based transformations at the nano‐junction could be achieved electrochemically to allow efficient switching between different redox states of a single‐molecule, showcasing the possibility of maneuvering transport properties with on‐off states of the molecule. Herein, are presented the fundamentals of SMBJs, and the electrochemically influenced transformations or switching of organic molecules pursued at SMBJs. Such an understanding of electrochemical phenomena at the nanoscale dimension could bridge the knowledge gap between macroscopic electronic circuits and single‐molecule electronic circuits, whereby the feasibility of switching between the states could maneuver the electronic properties as well as other photophysical parameters.\",\"PeriodicalId\":167,\"journal\":{\"name\":\"European Journal of Organic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/ejoc.202400980\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/ejoc.202400980","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Molecular Break Junction: A Stage for Redox Transformations
An exceptionally brilliant strategy to miniaturize electronic devices is to employ a single‐molecule between two electrodes for carrier conduction at single‐molecule break junctions (SMBJ). To understand the intrinsic mechanisms of operation at these junctions, extremely crucial is to study physical, chemical, and electrochemical properties employing single‐molecules at SMBJs. Further, redox‐based transformations at the nano‐junction could be achieved electrochemically to allow efficient switching between different redox states of a single‐molecule, showcasing the possibility of maneuvering transport properties with on‐off states of the molecule. Herein, are presented the fundamentals of SMBJs, and the electrochemically influenced transformations or switching of organic molecules pursued at SMBJs. Such an understanding of electrochemical phenomena at the nanoscale dimension could bridge the knowledge gap between macroscopic electronic circuits and single‐molecule electronic circuits, whereby the feasibility of switching between the states could maneuver the electronic properties as well as other photophysical parameters.
期刊介绍:
The European Journal of Organic Chemistry (2019 ISI Impact Factor 2.889) publishes Full Papers, Communications, and Minireviews from the entire spectrum of synthetic organic, bioorganic and physical-organic chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form two leading journals, the European Journal of Organic Chemistry and the European Journal of Inorganic Chemistry:
Liebigs Annalen
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry.