{"title":"将眼动跟踪与分组融合网络相结合,实现乳腺 X 射线图像的语义分割","authors":"Jiaming Xie;Qing Zhang;Zhiming Cui;Chong Ma;Yan Zhou;Wenping Wang;Dinggang Shen","doi":"10.1109/TMI.2024.3468404","DOIUrl":null,"url":null,"abstract":"Medical image segmentation has seen great progress in recent years, largely due to the development of deep neural networks. However, unlike in computer vision, high-quality clinical data is relatively scarce, and the annotation process is often a burden for clinicians. As a result, the scarcity of medical data limits the performance of existing medical image segmentation models. In this paper, we propose a novel framework that integrates eye tracking information from experienced radiologists during the screening process to improve the performance of deep neural networks with limited data. Our approach, a grouped hierarchical network, guides the network to learn from its faults by using gaze information as weak supervision. We demonstrate the effectiveness of our framework on mammogram images, particularly for handling segmentation classes with large scale differences. We evaluate the impact of gaze information on medical image segmentation tasks and show that our method achieves better segmentation performance compared to state-of-the-art models. A robustness study is conducted to investigate the influence of distraction or inaccuracies in gaze collection. We also develop a convenient system for collecting gaze data without interrupting the normal clinical workflow. Our work offers novel insights into the potential benefits of integrating gaze information into medical image segmentation tasks.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"868-879"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Eye Tracking With Grouped Fusion Networks for Semantic Segmentation on Mammogram Images\",\"authors\":\"Jiaming Xie;Qing Zhang;Zhiming Cui;Chong Ma;Yan Zhou;Wenping Wang;Dinggang Shen\",\"doi\":\"10.1109/TMI.2024.3468404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical image segmentation has seen great progress in recent years, largely due to the development of deep neural networks. However, unlike in computer vision, high-quality clinical data is relatively scarce, and the annotation process is often a burden for clinicians. As a result, the scarcity of medical data limits the performance of existing medical image segmentation models. In this paper, we propose a novel framework that integrates eye tracking information from experienced radiologists during the screening process to improve the performance of deep neural networks with limited data. Our approach, a grouped hierarchical network, guides the network to learn from its faults by using gaze information as weak supervision. We demonstrate the effectiveness of our framework on mammogram images, particularly for handling segmentation classes with large scale differences. We evaluate the impact of gaze information on medical image segmentation tasks and show that our method achieves better segmentation performance compared to state-of-the-art models. A robustness study is conducted to investigate the influence of distraction or inaccuracies in gaze collection. We also develop a convenient system for collecting gaze data without interrupting the normal clinical workflow. Our work offers novel insights into the potential benefits of integrating gaze information into medical image segmentation tasks.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 2\",\"pages\":\"868-879\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10697394/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10697394/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating Eye Tracking With Grouped Fusion Networks for Semantic Segmentation on Mammogram Images
Medical image segmentation has seen great progress in recent years, largely due to the development of deep neural networks. However, unlike in computer vision, high-quality clinical data is relatively scarce, and the annotation process is often a burden for clinicians. As a result, the scarcity of medical data limits the performance of existing medical image segmentation models. In this paper, we propose a novel framework that integrates eye tracking information from experienced radiologists during the screening process to improve the performance of deep neural networks with limited data. Our approach, a grouped hierarchical network, guides the network to learn from its faults by using gaze information as weak supervision. We demonstrate the effectiveness of our framework on mammogram images, particularly for handling segmentation classes with large scale differences. We evaluate the impact of gaze information on medical image segmentation tasks and show that our method achieves better segmentation performance compared to state-of-the-art models. A robustness study is conducted to investigate the influence of distraction or inaccuracies in gaze collection. We also develop a convenient system for collecting gaze data without interrupting the normal clinical workflow. Our work offers novel insights into the potential benefits of integrating gaze information into medical image segmentation tasks.