Yang Yang, Yin-suen Tse, Qi Zhang, Kin-yau Wong, Chenxi Yang, Ying Yang, Shuqi Li, Kin-wa Lau, Trevor C. Charles, Thomas C. Lam, Qian Zhao
{"title":"利用集成化学基因组学和化学蛋白质组学进行多重靶标分析","authors":"Yang Yang, Yin-suen Tse, Qi Zhang, Kin-yau Wong, Chenxi Yang, Ying Yang, Shuqi Li, Kin-wa Lau, Trevor C. Charles, Thomas C. Lam, Qian Zhao","doi":"10.1021/acs.jmedchem.4c01463","DOIUrl":null,"url":null,"abstract":"Target identification is crucial for elucidating the mechanisms of bioactive molecules in drug discovery. However, traditional methods assess compounds individually, making it challenging to efficiently examine multiple compounds in parallel, especially for structurally diverse compounds. This study reports a novel strategy called chemical genomics-facilitated chemical proteomics (CGCP) for multiplexing the target identification of bioactive small molecules. CGCP correlates compounds’ perturbation of global transcription, or chemical genomic profiles, with their reactivity toward target proteins, enabling simultaneous identification of targets. We demonstrated the utility of CGCP by studying the targets of celastrol (Cel) and four other electrophilic compounds with varying levels of similarity to Cel based on their chemical genomic profiles. We identified multiple novel targets and binding sites shared by the compounds in a single experiment. CGCP enabled multiplexity and improved the efficiency of target identification for structurally distinct compounds, indicating its potential to accelerate drug discovery.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplexed Target Profiling with Integrated Chemical Genomics and Chemical Proteomics\",\"authors\":\"Yang Yang, Yin-suen Tse, Qi Zhang, Kin-yau Wong, Chenxi Yang, Ying Yang, Shuqi Li, Kin-wa Lau, Trevor C. Charles, Thomas C. Lam, Qian Zhao\",\"doi\":\"10.1021/acs.jmedchem.4c01463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target identification is crucial for elucidating the mechanisms of bioactive molecules in drug discovery. However, traditional methods assess compounds individually, making it challenging to efficiently examine multiple compounds in parallel, especially for structurally diverse compounds. This study reports a novel strategy called chemical genomics-facilitated chemical proteomics (CGCP) for multiplexing the target identification of bioactive small molecules. CGCP correlates compounds’ perturbation of global transcription, or chemical genomic profiles, with their reactivity toward target proteins, enabling simultaneous identification of targets. We demonstrated the utility of CGCP by studying the targets of celastrol (Cel) and four other electrophilic compounds with varying levels of similarity to Cel based on their chemical genomic profiles. We identified multiple novel targets and binding sites shared by the compounds in a single experiment. CGCP enabled multiplexity and improved the efficiency of target identification for structurally distinct compounds, indicating its potential to accelerate drug discovery.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c01463\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01463","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multiplexed Target Profiling with Integrated Chemical Genomics and Chemical Proteomics
Target identification is crucial for elucidating the mechanisms of bioactive molecules in drug discovery. However, traditional methods assess compounds individually, making it challenging to efficiently examine multiple compounds in parallel, especially for structurally diverse compounds. This study reports a novel strategy called chemical genomics-facilitated chemical proteomics (CGCP) for multiplexing the target identification of bioactive small molecules. CGCP correlates compounds’ perturbation of global transcription, or chemical genomic profiles, with their reactivity toward target proteins, enabling simultaneous identification of targets. We demonstrated the utility of CGCP by studying the targets of celastrol (Cel) and four other electrophilic compounds with varying levels of similarity to Cel based on their chemical genomic profiles. We identified multiple novel targets and binding sites shared by the compounds in a single experiment. CGCP enabled multiplexity and improved the efficiency of target identification for structurally distinct compounds, indicating its potential to accelerate drug discovery.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.