对块状 Cu2OSeO3 表面的磁旋涡相、天电离子团和天电离子位移进行成像

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-09-28 DOI:10.1038/s43246-024-00647-5
Estefani Marchiori, Giulio Romagnoli, Lukas Schneider, Boris Gross, Pardis Sahafi, Andrew Jordan, Raffi Budakian, Priya R. Baral, Arnaud Magrez, Jonathan S. White, Martino Poggio
{"title":"对块状 Cu2OSeO3 表面的磁旋涡相、天电离子团和天电离子位移进行成像","authors":"Estefani Marchiori, Giulio Romagnoli, Lukas Schneider, Boris Gross, Pardis Sahafi, Andrew Jordan, Raffi Budakian, Priya R. Baral, Arnaud Magrez, Jonathan S. White, Martino Poggio","doi":"10.1038/s43246-024-00647-5","DOIUrl":null,"url":null,"abstract":"Surfaces – by breaking bulk symmetries, introducing roughness, or hosting defects – can significantly influence magnetic order in magnetic materials. Determining their effect on the complex nanometer-scale phases present in certain non-centrosymmetric magnets is an outstanding problem requiring high-resolution magnetic microscopy. Here, we use scanning SQUID microscopy to image the surface of bulk Cu2OSeO3 at low temperature and in a magnetic field applied along $$\\left\\langle 100\\right\\rangle$$ . Real-space maps measured as a function of applied field reveal the microscopic structure of the magnetic phases and their transitions. In low applied field, we observe a magnetic texture consistent with an in-plane stripe phase, pointing to the existence of a distinct surface state. In the low-temperature skyrmion phase, the surface is populated by clusters of disordered skyrmions, which emerge from rupturing domains of the tilted spiral phase. Furthermore, we displace individual skyrmions from their pinning sites by applying an electric potential to the scanning probe, thereby demonstrating local skyrmion control at the surface of a magnetoelectric insulator. Surfaces can significantly influence magnetic order by breaking bulk symmetries, introducing roughness, or hosting defects. Here, a microscopy study of the surface of bulk Cu2OSeO3 reveals magnetic textures associated with distinct surface states, such as in-plane magnetic stripes that are absent in the bulk, and demonstrates the local displacement of individual skyrmions by an applied electric field.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00647-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3\",\"authors\":\"Estefani Marchiori, Giulio Romagnoli, Lukas Schneider, Boris Gross, Pardis Sahafi, Andrew Jordan, Raffi Budakian, Priya R. Baral, Arnaud Magrez, Jonathan S. White, Martino Poggio\",\"doi\":\"10.1038/s43246-024-00647-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surfaces – by breaking bulk symmetries, introducing roughness, or hosting defects – can significantly influence magnetic order in magnetic materials. Determining their effect on the complex nanometer-scale phases present in certain non-centrosymmetric magnets is an outstanding problem requiring high-resolution magnetic microscopy. Here, we use scanning SQUID microscopy to image the surface of bulk Cu2OSeO3 at low temperature and in a magnetic field applied along $$\\\\left\\\\langle 100\\\\right\\\\rangle$$ . Real-space maps measured as a function of applied field reveal the microscopic structure of the magnetic phases and their transitions. In low applied field, we observe a magnetic texture consistent with an in-plane stripe phase, pointing to the existence of a distinct surface state. In the low-temperature skyrmion phase, the surface is populated by clusters of disordered skyrmions, which emerge from rupturing domains of the tilted spiral phase. Furthermore, we displace individual skyrmions from their pinning sites by applying an electric potential to the scanning probe, thereby demonstrating local skyrmion control at the surface of a magnetoelectric insulator. Surfaces can significantly influence magnetic order by breaking bulk symmetries, introducing roughness, or hosting defects. Here, a microscopy study of the surface of bulk Cu2OSeO3 reveals magnetic textures associated with distinct surface states, such as in-plane magnetic stripes that are absent in the bulk, and demonstrates the local displacement of individual skyrmions by an applied electric field.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00647-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00647-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00647-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

表面--通过打破块体对称性、引入粗糙度或容纳缺陷--可以极大地影响磁性材料中的磁序。确定它们对某些非中心对称磁体中存在的复杂纳米尺度相的影响是一个需要高分辨率磁性显微镜的突出问题。在这里,我们使用扫描 SQUID 显微镜在低温和沿 $$\left\langle 100\right\rangle$ 的磁场作用下对块状 Cu2OSeO3 的表面进行成像。作为外加磁场函数测量的实空间图揭示了磁性相的微观结构及其转变。在低外加磁场中,我们观察到与面内条纹相一致的磁纹理,这表明存在一种独特的表面态。在低温天融子相中,表面由无序天融子簇填充,这些天融子簇是从倾斜螺旋相的破裂畴中产生的。此外,我们通过在扫描探针上施加电势,将单个天融子从其引脚位置移出,从而证明了磁电绝缘体表面的局部天融子控制。表面可以通过打破体对称性、引入粗糙度或承载缺陷来显著影响磁序。在这里,对块状 Cu2OSeO3 表面进行的显微镜研究揭示了与不同表面状态相关的磁纹理,例如在块体中不存在的面内磁条,并展示了外加电场对单个天电离子的局部位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3
Surfaces – by breaking bulk symmetries, introducing roughness, or hosting defects – can significantly influence magnetic order in magnetic materials. Determining their effect on the complex nanometer-scale phases present in certain non-centrosymmetric magnets is an outstanding problem requiring high-resolution magnetic microscopy. Here, we use scanning SQUID microscopy to image the surface of bulk Cu2OSeO3 at low temperature and in a magnetic field applied along $$\left\langle 100\right\rangle$$ . Real-space maps measured as a function of applied field reveal the microscopic structure of the magnetic phases and their transitions. In low applied field, we observe a magnetic texture consistent with an in-plane stripe phase, pointing to the existence of a distinct surface state. In the low-temperature skyrmion phase, the surface is populated by clusters of disordered skyrmions, which emerge from rupturing domains of the tilted spiral phase. Furthermore, we displace individual skyrmions from their pinning sites by applying an electric potential to the scanning probe, thereby demonstrating local skyrmion control at the surface of a magnetoelectric insulator. Surfaces can significantly influence magnetic order by breaking bulk symmetries, introducing roughness, or hosting defects. Here, a microscopy study of the surface of bulk Cu2OSeO3 reveals magnetic textures associated with distinct surface states, such as in-plane magnetic stripes that are absent in the bulk, and demonstrates the local displacement of individual skyrmions by an applied electric field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Thermodynamic evidence for polaron stabilization inside the antiferromagnetic order of Eu5In2Sb6 Benefits and complexity of defects in metal-organic frameworks Multi-sensing yarns for continuous wireless sweat lactate monitoring Unexpected band structure changes within the higher-temperature antiferromagnetic state of CeBi Bioengineering approach for the design of magnetic bacterial cellulose membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1