{"title":"快速生成用于素材编辑的化学修饰长 pegRNA","authors":"Xinlin Lei, Anhui Huang, Didi Chen, Xuebin Wang, Ruijin Ji, Jinlin Wang, Yizhou Zhang, Yuming Zhang, Shuhan Lu, Kun Zhang, Qiubing Chen, Ying Zhang, Hao Yin","doi":"10.1038/s41587-024-02394-x","DOIUrl":null,"url":null,"abstract":"<p>The editing efficiencies of prime editing (PE) using ribonucleoprotein (RNP) and RNA delivery are not optimal due to the challenges in solid-phase synthesis of long PE guide RNA (pegRNA) (>125 nt). Here, we develop an efficient, rapid and cost-effective method for generating chemically modified pegRNA (125–145 nt) and engineered pegRNA (epegRNA) (170–190 nt). We use an optimized splint ligation approach and achieve approximately 90% production efficiency for these RNAs, referred to as L-pegRNA and L-epegRNA. L-epegRNA demonstrates enhanced editing efficiencies across various cell lines and human primary cells with improvements of up to more than tenfold when using RNP delivery and several hundredfold with RNA delivery of PE, compared to epegRNA produced by in vitro transcription. L-epegRNA-mediated RNP delivery also outperforms plasmid-encoded PE in most comparisons. Our study provides a solution to obtaining high-quality pegRNA and epegRNA with desired chemical modifications, paving the way for the use of PE in therapeutics and various other fields.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid generation of long, chemically modified pegRNAs for prime editing\",\"authors\":\"Xinlin Lei, Anhui Huang, Didi Chen, Xuebin Wang, Ruijin Ji, Jinlin Wang, Yizhou Zhang, Yuming Zhang, Shuhan Lu, Kun Zhang, Qiubing Chen, Ying Zhang, Hao Yin\",\"doi\":\"10.1038/s41587-024-02394-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The editing efficiencies of prime editing (PE) using ribonucleoprotein (RNP) and RNA delivery are not optimal due to the challenges in solid-phase synthesis of long PE guide RNA (pegRNA) (>125 nt). Here, we develop an efficient, rapid and cost-effective method for generating chemically modified pegRNA (125–145 nt) and engineered pegRNA (epegRNA) (170–190 nt). We use an optimized splint ligation approach and achieve approximately 90% production efficiency for these RNAs, referred to as L-pegRNA and L-epegRNA. L-epegRNA demonstrates enhanced editing efficiencies across various cell lines and human primary cells with improvements of up to more than tenfold when using RNP delivery and several hundredfold with RNA delivery of PE, compared to epegRNA produced by in vitro transcription. L-epegRNA-mediated RNP delivery also outperforms plasmid-encoded PE in most comparisons. Our study provides a solution to obtaining high-quality pegRNA and epegRNA with desired chemical modifications, paving the way for the use of PE in therapeutics and various other fields.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41587-024-02394-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-024-02394-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Rapid generation of long, chemically modified pegRNAs for prime editing
The editing efficiencies of prime editing (PE) using ribonucleoprotein (RNP) and RNA delivery are not optimal due to the challenges in solid-phase synthesis of long PE guide RNA (pegRNA) (>125 nt). Here, we develop an efficient, rapid and cost-effective method for generating chemically modified pegRNA (125–145 nt) and engineered pegRNA (epegRNA) (170–190 nt). We use an optimized splint ligation approach and achieve approximately 90% production efficiency for these RNAs, referred to as L-pegRNA and L-epegRNA. L-epegRNA demonstrates enhanced editing efficiencies across various cell lines and human primary cells with improvements of up to more than tenfold when using RNP delivery and several hundredfold with RNA delivery of PE, compared to epegRNA produced by in vitro transcription. L-epegRNA-mediated RNP delivery also outperforms plasmid-encoded PE in most comparisons. Our study provides a solution to obtaining high-quality pegRNA and epegRNA with desired chemical modifications, paving the way for the use of PE in therapeutics and various other fields.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.