Victor T. van Lange, Alain Dijkstra, Elham M. T. Fadaly, Wouter H. J. Peeters, Marvin A. J. van Tilburg, Erik P. A. M. Bakkers, Friedhelm Bechstedt, Jonathan J. Finley, Jos E. M. Haverkort
{"title":"六方 Ge 的纳秒载流子寿命","authors":"Victor T. van Lange, Alain Dijkstra, Elham M. T. Fadaly, Wouter H. J. Peeters, Marvin A. J. van Tilburg, Erik P. A. M. Bakkers, Friedhelm Bechstedt, Jonathan J. Finley, Jos E. M. Haverkort","doi":"10.1021/acsphotonics.4c01135","DOIUrl":null,"url":null,"abstract":"Hexagonal Si<sub>1–<i>x</i></sub>Ge<sub><i>x</i></sub> with suitable alloy composition promises to become a new silicon compatible direct bandgap family of semiconductors. Theoretical calculations, however, predict that the binary end point of this family, the bulk hex-Ge crystal, is only weakly dipole active. This is in contrast to hex-Si<sub>1–<i>x</i></sub>Ge<sub><i>x</i></sub>, where translation symmetry is broken by alloy disorder, permitting efficient light emission. Surprisingly, we observe equally strong radiative recombination in hex-Ge as in hex-Si<sub>1–<i>x</i></sub>Ge<sub><i>x</i></sub> nanowires, but scrutinizing experiments on the radiative lifetime and the optical transition matrix element of hex-Ge remain hitherto unexplored. Here, we report an advanced spectral line shape analysis exploiting the Lasher–Stern–Würfel (LSW) model on an excitation density series of hex-Ge nanowire photoluminescence spectra covering 3 orders of magnitude. The analysis was performed at low temperature where radiative recombination is dominant. We analyze the amount of photoinduced bandfilling to obtain direct access to the excited carrier density, which allows to extract a radiative lifetime of (2.1 ± 0.3) ns by equating the carrier generation and recombination rates. In addition, we leveraged the LSW model to independently extract a high oscillator strength of 10.5 ± 0.9, comparable to the oscillator strength of III/V semiconductors like GaAs or GaN, showing that the optical properties of hex-Ge nanostructures are perfectly suited for a wide range of optoelectronic device applications.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanosecond Carrier Lifetime of Hexagonal Ge\",\"authors\":\"Victor T. van Lange, Alain Dijkstra, Elham M. T. Fadaly, Wouter H. J. Peeters, Marvin A. J. van Tilburg, Erik P. A. M. Bakkers, Friedhelm Bechstedt, Jonathan J. Finley, Jos E. M. Haverkort\",\"doi\":\"10.1021/acsphotonics.4c01135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hexagonal Si<sub>1–<i>x</i></sub>Ge<sub><i>x</i></sub> with suitable alloy composition promises to become a new silicon compatible direct bandgap family of semiconductors. Theoretical calculations, however, predict that the binary end point of this family, the bulk hex-Ge crystal, is only weakly dipole active. This is in contrast to hex-Si<sub>1–<i>x</i></sub>Ge<sub><i>x</i></sub>, where translation symmetry is broken by alloy disorder, permitting efficient light emission. Surprisingly, we observe equally strong radiative recombination in hex-Ge as in hex-Si<sub>1–<i>x</i></sub>Ge<sub><i>x</i></sub> nanowires, but scrutinizing experiments on the radiative lifetime and the optical transition matrix element of hex-Ge remain hitherto unexplored. Here, we report an advanced spectral line shape analysis exploiting the Lasher–Stern–Würfel (LSW) model on an excitation density series of hex-Ge nanowire photoluminescence spectra covering 3 orders of magnitude. The analysis was performed at low temperature where radiative recombination is dominant. We analyze the amount of photoinduced bandfilling to obtain direct access to the excited carrier density, which allows to extract a radiative lifetime of (2.1 ± 0.3) ns by equating the carrier generation and recombination rates. In addition, we leveraged the LSW model to independently extract a high oscillator strength of 10.5 ± 0.9, comparable to the oscillator strength of III/V semiconductors like GaAs or GaN, showing that the optical properties of hex-Ge nanostructures are perfectly suited for a wide range of optoelectronic device applications.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphotonics.4c01135\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01135","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hexagonal Si1–xGex with suitable alloy composition promises to become a new silicon compatible direct bandgap family of semiconductors. Theoretical calculations, however, predict that the binary end point of this family, the bulk hex-Ge crystal, is only weakly dipole active. This is in contrast to hex-Si1–xGex, where translation symmetry is broken by alloy disorder, permitting efficient light emission. Surprisingly, we observe equally strong radiative recombination in hex-Ge as in hex-Si1–xGex nanowires, but scrutinizing experiments on the radiative lifetime and the optical transition matrix element of hex-Ge remain hitherto unexplored. Here, we report an advanced spectral line shape analysis exploiting the Lasher–Stern–Würfel (LSW) model on an excitation density series of hex-Ge nanowire photoluminescence spectra covering 3 orders of magnitude. The analysis was performed at low temperature where radiative recombination is dominant. We analyze the amount of photoinduced bandfilling to obtain direct access to the excited carrier density, which allows to extract a radiative lifetime of (2.1 ± 0.3) ns by equating the carrier generation and recombination rates. In addition, we leveraged the LSW model to independently extract a high oscillator strength of 10.5 ± 0.9, comparable to the oscillator strength of III/V semiconductors like GaAs or GaN, showing that the optical properties of hex-Ge nanostructures are perfectly suited for a wide range of optoelectronic device applications.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.