{"title":"电场诱导的金属轨道角动量","authors":"Kyung-Jin Lee, Vincent Cros, Hyun-Woo Lee","doi":"10.1038/s41563-024-01978-x","DOIUrl":null,"url":null,"abstract":"Electrons in solids carry orbital angular momentum in diverse non-equilibrium situations. This orbital current is often overlooked when considering electronic transport. Here we discuss how recent studies of orbital current are enabling more opportunities for technological advancements rooted in angular momentum.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 10","pages":"1302-1304"},"PeriodicalIF":37.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric-field-induced orbital angular momentum in metals\",\"authors\":\"Kyung-Jin Lee, Vincent Cros, Hyun-Woo Lee\",\"doi\":\"10.1038/s41563-024-01978-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrons in solids carry orbital angular momentum in diverse non-equilibrium situations. This orbital current is often overlooked when considering electronic transport. Here we discuss how recent studies of orbital current are enabling more opportunities for technological advancements rooted in angular momentum.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"23 10\",\"pages\":\"1302-1304\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41563-024-01978-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-01978-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electric-field-induced orbital angular momentum in metals
Electrons in solids carry orbital angular momentum in diverse non-equilibrium situations. This orbital current is often overlooked when considering electronic transport. Here we discuss how recent studies of orbital current are enabling more opportunities for technological advancements rooted in angular momentum.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.