在微尺度 Si-C 阳极边缘丰富的石墨烯阵列上构建富含 LiF 的固体电解质界面,以开发高能量锂离子电池

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-30 DOI:10.1002/adfm.202414384
Ke Ge, Zhenhong Wang, Jie Liu, Yongbiao Mu, Rui Wang, Xiaoqian Xu, Yichun Wang, Zhiyu Zou, Qing Zhang, Meisheng Han, Lin Zeng
{"title":"在微尺度 Si-C 阳极边缘丰富的石墨烯阵列上构建富含 LiF 的固体电解质界面,以开发高能量锂离子电池","authors":"Ke Ge, Zhenhong Wang, Jie Liu, Yongbiao Mu, Rui Wang, Xiaoqian Xu, Yichun Wang, Zhiyu Zou, Qing Zhang, Meisheng Han, Lin Zeng","doi":"10.1002/adfm.202414384","DOIUrl":null,"url":null,"abstract":"Silicon (Si) anodes offer excellent lithium storage capacity for lithium-ion batteries but face practical limitations due to significant volume expansion and low intrinsic electrical conductivity. These issues lead to side reactions that consume the electrolyte and impede ion-electron transport, resulting in low areal loading (<2 mg cm⁻²) and restricted energy density. To address this, a scalable method is developed using spray drying of commercial graphite flakes (s-Gr) and nanosilicon particles (n-Si), followed by chemical vapor deposition to create microscale Si/C anodes (s-Gr/n-Si/VGs). Thin vertical graphene nanosheets (VGs) are grown on the surfaces and within the internal pores, forming a robust, micron-sized Si/C spherical composite material. The VGs construct the conductive network, allowing the electrodes to operate at high areal loadings without pulverization and promoting LiF-enriched solid electrolyte interphase for improved cycling stability. The s-Gr/n-Si/VGs maintain a capacity of 641.9 mAh g⁻¹ after 1000 cycles at 11.0 mg cm⁻², retaining 95.9% capacity. In pouch cells with NCM811 cathodes, the 5.0 Ah-level cells achieved 80.0% capacity retention after 510 cycles at 1.0 C. This research provides a feasible pathway for manufacturing high-performance, low-cost, and scalable Si/C anodes suitable for high-energy-density lithium-ion batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing LiF-Enriched Solid Electrolyte Interface on Graphene Arrays with Abundant Edges on Microscale Si-C Anodes Toward High-Energy Lithium-Ion Batteries\",\"authors\":\"Ke Ge, Zhenhong Wang, Jie Liu, Yongbiao Mu, Rui Wang, Xiaoqian Xu, Yichun Wang, Zhiyu Zou, Qing Zhang, Meisheng Han, Lin Zeng\",\"doi\":\"10.1002/adfm.202414384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon (Si) anodes offer excellent lithium storage capacity for lithium-ion batteries but face practical limitations due to significant volume expansion and low intrinsic electrical conductivity. These issues lead to side reactions that consume the electrolyte and impede ion-electron transport, resulting in low areal loading (<2 mg cm⁻²) and restricted energy density. To address this, a scalable method is developed using spray drying of commercial graphite flakes (s-Gr) and nanosilicon particles (n-Si), followed by chemical vapor deposition to create microscale Si/C anodes (s-Gr/n-Si/VGs). Thin vertical graphene nanosheets (VGs) are grown on the surfaces and within the internal pores, forming a robust, micron-sized Si/C spherical composite material. The VGs construct the conductive network, allowing the electrodes to operate at high areal loadings without pulverization and promoting LiF-enriched solid electrolyte interphase for improved cycling stability. The s-Gr/n-Si/VGs maintain a capacity of 641.9 mAh g⁻¹ after 1000 cycles at 11.0 mg cm⁻², retaining 95.9% capacity. In pouch cells with NCM811 cathodes, the 5.0 Ah-level cells achieved 80.0% capacity retention after 510 cycles at 1.0 C. This research provides a feasible pathway for manufacturing high-performance, low-cost, and scalable Si/C anodes suitable for high-energy-density lithium-ion batteries.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202414384\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414384","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硅(Si)阳极可为锂离子电池提供出色的锂储存能力,但由于体积膨胀显著和固有电导率较低而面临实际限制。这些问题会导致副反应,消耗电解质并阻碍离子-电子传输,从而导致低面积负载(<2 mg cm-²)和能量密度受限。为了解决这个问题,我们开发了一种可扩展的方法,利用喷雾干燥商用石墨片(s-Gr)和纳米硅颗粒(n-Si),然后通过化学气相沉积来制造微尺度 Si/C 阳极(s-Gr/n-Si/VGs)。薄的垂直石墨烯纳米片(VGs)生长在表面和内部孔隙中,形成坚固的微米级硅/碳球形复合材料。石墨烯纳米片构建了导电网络,使电极能够在高负载下运行而不会粉化,并促进富含锂离子的固体电解质相间,从而提高循环稳定性。在 11.0 mg cm-² 的条件下循环 1000 次后,s-Gr/n-Si/VGs 的容量保持在 641.9 mAh g-¹,容量保持率为 95.9%。这项研究为制造适用于高能量密度锂离子电池的高性能、低成本和可扩展的 Si/C 阳极提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constructing LiF-Enriched Solid Electrolyte Interface on Graphene Arrays with Abundant Edges on Microscale Si-C Anodes Toward High-Energy Lithium-Ion Batteries
Silicon (Si) anodes offer excellent lithium storage capacity for lithium-ion batteries but face practical limitations due to significant volume expansion and low intrinsic electrical conductivity. These issues lead to side reactions that consume the electrolyte and impede ion-electron transport, resulting in low areal loading (<2 mg cm⁻²) and restricted energy density. To address this, a scalable method is developed using spray drying of commercial graphite flakes (s-Gr) and nanosilicon particles (n-Si), followed by chemical vapor deposition to create microscale Si/C anodes (s-Gr/n-Si/VGs). Thin vertical graphene nanosheets (VGs) are grown on the surfaces and within the internal pores, forming a robust, micron-sized Si/C spherical composite material. The VGs construct the conductive network, allowing the electrodes to operate at high areal loadings without pulverization and promoting LiF-enriched solid electrolyte interphase for improved cycling stability. The s-Gr/n-Si/VGs maintain a capacity of 641.9 mAh g⁻¹ after 1000 cycles at 11.0 mg cm⁻², retaining 95.9% capacity. In pouch cells with NCM811 cathodes, the 5.0 Ah-level cells achieved 80.0% capacity retention after 510 cycles at 1.0 C. This research provides a feasible pathway for manufacturing high-performance, low-cost, and scalable Si/C anodes suitable for high-energy-density lithium-ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Bioinspired Stretchable Strain Sensor with High Linearity and Superhydrophobicity for Underwater Applications Synergizing Proton‐Dominated Storage and Electron Transfer for High‐Loading, Fast‐Rate Organic Anode in Metal‐Free Aqueous Zinc‐Ion Batteries Enhanced Pyroelectricity Over Extended Thermal Range in Flexible Polymer Thin Films Stability Challenges in Industrialization of Perovskite Photovoltaics: From Atomic‐Scale View to Module Encapsulation Photothermal-Electric Excited Droplet Multibehavioral Manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1