Tun Liu, Jia Li, Huaguang Qi, Bin Guo, Songchuan Zhao, Baoping Zhang, Langbo Li, Gang Wu, Gang Wang
{"title":"通过机器学习预测胸椎管狭窄症手术治疗后功能状况恶化的开发和内部验证。","authors":"Tun Liu, Jia Li, Huaguang Qi, Bin Guo, Songchuan Zhao, Baoping Zhang, Langbo Li, Gang Wu, Gang Wang","doi":"10.12659/MSM.945310","DOIUrl":null,"url":null,"abstract":"<p><p>BACKGROUND The objective of this study was to develop and validate machine learning (ML) algorithms to predict the 30-day and 6-month risk of deteriorating functional status following surgical treatment for thoracic spinal stenosis (TSS). We aimed to provide surgeons with tools to identify patients with TSS who have a higher risk of postoperative functional decline. MATERIAL AND METHODS The records of 327 patients with TSS who completed both follow-up visits were analyzed. Our primary endpoint was the dichotomized change in the perioperative Japanese Orthopedic Association (JOA) score, categorized based on whether it deteriorated or not. The models were developed using Naïve Bays, LightGBM, XGBoost, logistic regression, and random forest classification models. The model performance was assessed by accuracy and the c-statistic. ML algorithms were trained, optimized, and tested. RESULTS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity. CONCLUSIONS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity.</p>","PeriodicalId":48888,"journal":{"name":"Medical Science Monitor","volume":"30 ","pages":"e945310"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443983/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Internal Validation of Machine Learning to Predict Postoperative Worse Functional Status after Surgical Treatment for Thoracic Spinal Stenosis.\",\"authors\":\"Tun Liu, Jia Li, Huaguang Qi, Bin Guo, Songchuan Zhao, Baoping Zhang, Langbo Li, Gang Wu, Gang Wang\",\"doi\":\"10.12659/MSM.945310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BACKGROUND The objective of this study was to develop and validate machine learning (ML) algorithms to predict the 30-day and 6-month risk of deteriorating functional status following surgical treatment for thoracic spinal stenosis (TSS). We aimed to provide surgeons with tools to identify patients with TSS who have a higher risk of postoperative functional decline. MATERIAL AND METHODS The records of 327 patients with TSS who completed both follow-up visits were analyzed. Our primary endpoint was the dichotomized change in the perioperative Japanese Orthopedic Association (JOA) score, categorized based on whether it deteriorated or not. The models were developed using Naïve Bays, LightGBM, XGBoost, logistic regression, and random forest classification models. The model performance was assessed by accuracy and the c-statistic. ML algorithms were trained, optimized, and tested. RESULTS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity. CONCLUSIONS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity.</p>\",\"PeriodicalId\":48888,\"journal\":{\"name\":\"Medical Science Monitor\",\"volume\":\"30 \",\"pages\":\"e945310\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443983/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Science Monitor\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12659/MSM.945310\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Science Monitor","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12659/MSM.945310","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Development and Internal Validation of Machine Learning to Predict Postoperative Worse Functional Status after Surgical Treatment for Thoracic Spinal Stenosis.
BACKGROUND The objective of this study was to develop and validate machine learning (ML) algorithms to predict the 30-day and 6-month risk of deteriorating functional status following surgical treatment for thoracic spinal stenosis (TSS). We aimed to provide surgeons with tools to identify patients with TSS who have a higher risk of postoperative functional decline. MATERIAL AND METHODS The records of 327 patients with TSS who completed both follow-up visits were analyzed. Our primary endpoint was the dichotomized change in the perioperative Japanese Orthopedic Association (JOA) score, categorized based on whether it deteriorated or not. The models were developed using Naïve Bays, LightGBM, XGBoost, logistic regression, and random forest classification models. The model performance was assessed by accuracy and the c-statistic. ML algorithms were trained, optimized, and tested. RESULTS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity. CONCLUSIONS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity.
期刊介绍:
Medical Science Monitor (MSM) established in 1995 is an international, peer-reviewed scientific journal which publishes original articles in Clinical Medicine and related disciplines such as Epidemiology and Population Studies, Product Investigations, Development of Laboratory Techniques :: Diagnostics and Medical Technology which enable presentation of research or review works in overlapping areas of medicine and technology such us (but not limited to): medical diagnostics, medical imaging systems, computer simulation of health and disease processes, new medical devices, etc. Reviews and Special Reports - papers may be accepted on the basis that they provide a systematic, critical and up-to-date overview of literature pertaining to research or clinical topics. Meta-analyses are considered as reviews. A special attention will be paid to a teaching value of a review paper.
Medical Science Monitor is internationally indexed in Thomson-Reuters Web of Science, Journals Citation Report (JCR), Science Citation Index Expanded (SCI), Index Medicus MEDLINE, PubMed, PMC, EMBASE/Excerpta Medica, Chemical Abstracts CAS and Index Copernicus.