Xiaocong Zhou, Zisi Fang, Ye Lv, Chaokang Li, Shanshan Xu, Keyi Cheng, Yanjun Ren, Na Lv, Bing Gao, Hong Xu
{"title":"在中国杭州使用 BKMR 测量空气污染物混合物对呼吸系统死亡率的综合健康影响。","authors":"Xiaocong Zhou, Zisi Fang, Ye Lv, Chaokang Li, Shanshan Xu, Keyi Cheng, Yanjun Ren, Na Lv, Bing Gao, Hong Xu","doi":"10.1080/10962247.2024.2411033","DOIUrl":null,"url":null,"abstract":"<p><p>Previous research on respiratory system mortality primarily focused on understanding their combined effects and have neglected the fact that air pollution mixtures are interrelated. This study used Bayesian kernel machine regression (BKMR) to analyze the relationship between air pollutant mixtures and respiratory mortality in Hangzhou, China from 2014 to 2018. The results showed a significant association between pollutant mixtures and respiratory system mortality primarily driven by PM<sub>2.5</sub> and SO<sub>2</sub>. The joint exposure of air pollutants was positively correlated with respiratory system mortality at lag 01 and lag 02 days. The estimated joint effects of log-transformed mixture air pollution exposure on log-transformed respiratory system mortality increased from -0.02 (95% CI: -0.08-0.02) and -0.01 (95% CI: -0.05-0.04) at the 25th percentile to 0.06 (95% CI: 0.01-0.12) and 0.04 (95% CI: -0.001, 0.09) at the 75th percentile. Additionally, there was evidence of an interaction between O<sub>3</sub> and PM<sub>10</sub>. This study confirms that exposure to multiple pollutants is a significant public health problem facing the Hangzhou population given the compounded effect proven with regression analysis, while furthermore, the control of PM<sub>2.5</sub> and SO<sub>2</sub> also represents a serious concern.<i>Implications:</i> Evidence indicates interactions between O<sub>3</sub> and PM<sub>10</sub>. This study demonstrates that exposure to multiple pollutants exerts combined effects on the public health of the Hangzhou population, highlighting the importance of controlling PM<sub>2.5</sub> and SO<sub>2</sub>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined health effects of air pollutant mixtures on respiratory mortality using BKMR in Hangzhou, China.\",\"authors\":\"Xiaocong Zhou, Zisi Fang, Ye Lv, Chaokang Li, Shanshan Xu, Keyi Cheng, Yanjun Ren, Na Lv, Bing Gao, Hong Xu\",\"doi\":\"10.1080/10962247.2024.2411033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous research on respiratory system mortality primarily focused on understanding their combined effects and have neglected the fact that air pollution mixtures are interrelated. This study used Bayesian kernel machine regression (BKMR) to analyze the relationship between air pollutant mixtures and respiratory mortality in Hangzhou, China from 2014 to 2018. The results showed a significant association between pollutant mixtures and respiratory system mortality primarily driven by PM<sub>2.5</sub> and SO<sub>2</sub>. The joint exposure of air pollutants was positively correlated with respiratory system mortality at lag 01 and lag 02 days. The estimated joint effects of log-transformed mixture air pollution exposure on log-transformed respiratory system mortality increased from -0.02 (95% CI: -0.08-0.02) and -0.01 (95% CI: -0.05-0.04) at the 25th percentile to 0.06 (95% CI: 0.01-0.12) and 0.04 (95% CI: -0.001, 0.09) at the 75th percentile. Additionally, there was evidence of an interaction between O<sub>3</sub> and PM<sub>10</sub>. This study confirms that exposure to multiple pollutants is a significant public health problem facing the Hangzhou population given the compounded effect proven with regression analysis, while furthermore, the control of PM<sub>2.5</sub> and SO<sub>2</sub> also represents a serious concern.<i>Implications:</i> Evidence indicates interactions between O<sub>3</sub> and PM<sub>10</sub>. This study demonstrates that exposure to multiple pollutants exerts combined effects on the public health of the Hangzhou population, highlighting the importance of controlling PM<sub>2.5</sub> and SO<sub>2</sub>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10962247.2024.2411033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10962247.2024.2411033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Combined health effects of air pollutant mixtures on respiratory mortality using BKMR in Hangzhou, China.
Previous research on respiratory system mortality primarily focused on understanding their combined effects and have neglected the fact that air pollution mixtures are interrelated. This study used Bayesian kernel machine regression (BKMR) to analyze the relationship between air pollutant mixtures and respiratory mortality in Hangzhou, China from 2014 to 2018. The results showed a significant association between pollutant mixtures and respiratory system mortality primarily driven by PM2.5 and SO2. The joint exposure of air pollutants was positively correlated with respiratory system mortality at lag 01 and lag 02 days. The estimated joint effects of log-transformed mixture air pollution exposure on log-transformed respiratory system mortality increased from -0.02 (95% CI: -0.08-0.02) and -0.01 (95% CI: -0.05-0.04) at the 25th percentile to 0.06 (95% CI: 0.01-0.12) and 0.04 (95% CI: -0.001, 0.09) at the 75th percentile. Additionally, there was evidence of an interaction between O3 and PM10. This study confirms that exposure to multiple pollutants is a significant public health problem facing the Hangzhou population given the compounded effect proven with regression analysis, while furthermore, the control of PM2.5 and SO2 also represents a serious concern.Implications: Evidence indicates interactions between O3 and PM10. This study demonstrates that exposure to multiple pollutants exerts combined effects on the public health of the Hangzhou population, highlighting the importance of controlling PM2.5 and SO2.