{"title":"基于新型双路径多模块模型的糖尿病视网膜病变分类算法。","authors":"Lirong Zhang, Jialin Gang, Jiangbo Liu, Hui Zhou, Yao Xiao, Jiaolin Wang, Yuyang Guo","doi":"10.1007/s11517-024-03194-w","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy is a chronic disease of the eye that is precipitated via diabetes. As the disease progresses, the blood vessels in the retina are issue to modifications such as dilation, leakage, and new blood vessel formation. Early detection and treatment of the lesions are vital for the prevention and reduction of imaginative and prescient loss. A new dual-path multi-module network algorithm for diabetic retinopathy classification is proposed in this paper, aiming to accurately classify the diabetic retinopathy stage to facilitate early diagnosis and intervention. To obtain the purpose of fact augmentation, the algorithm first enhances retinal lesion features using color correcting and multi-scale fusion algorithms. It then optimizes the local records via a multi-path multiplexing structure with convolutional kernels of exclusive sizes. Finally, a multi-feature fusion module is used to improve the accuracy of the diabetic retinopathy classification model. Two public datasets and a real hospital dataset are used to validate the algorithm. The accuracy is 98.9%, 99.3%, and 98.3%, respectively. The experimental results not only confirm the advancement and practicability of the algorithm in the field of automatic DR diagnosis, but also foretell its broad application prospects in clinical settings, which is expected to provide strong technical support for the early screening and treatment of diabetic retinopathy.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"365-381"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of diabetic retinopathy algorithm based on a novel dual-path multi-module model.\",\"authors\":\"Lirong Zhang, Jialin Gang, Jiangbo Liu, Hui Zhou, Yao Xiao, Jiaolin Wang, Yuyang Guo\",\"doi\":\"10.1007/s11517-024-03194-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic retinopathy is a chronic disease of the eye that is precipitated via diabetes. As the disease progresses, the blood vessels in the retina are issue to modifications such as dilation, leakage, and new blood vessel formation. Early detection and treatment of the lesions are vital for the prevention and reduction of imaginative and prescient loss. A new dual-path multi-module network algorithm for diabetic retinopathy classification is proposed in this paper, aiming to accurately classify the diabetic retinopathy stage to facilitate early diagnosis and intervention. To obtain the purpose of fact augmentation, the algorithm first enhances retinal lesion features using color correcting and multi-scale fusion algorithms. It then optimizes the local records via a multi-path multiplexing structure with convolutional kernels of exclusive sizes. Finally, a multi-feature fusion module is used to improve the accuracy of the diabetic retinopathy classification model. Two public datasets and a real hospital dataset are used to validate the algorithm. The accuracy is 98.9%, 99.3%, and 98.3%, respectively. The experimental results not only confirm the advancement and practicability of the algorithm in the field of automatic DR diagnosis, but also foretell its broad application prospects in clinical settings, which is expected to provide strong technical support for the early screening and treatment of diabetic retinopathy.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"365-381\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03194-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03194-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Classification of diabetic retinopathy algorithm based on a novel dual-path multi-module model.
Diabetic retinopathy is a chronic disease of the eye that is precipitated via diabetes. As the disease progresses, the blood vessels in the retina are issue to modifications such as dilation, leakage, and new blood vessel formation. Early detection and treatment of the lesions are vital for the prevention and reduction of imaginative and prescient loss. A new dual-path multi-module network algorithm for diabetic retinopathy classification is proposed in this paper, aiming to accurately classify the diabetic retinopathy stage to facilitate early diagnosis and intervention. To obtain the purpose of fact augmentation, the algorithm first enhances retinal lesion features using color correcting and multi-scale fusion algorithms. It then optimizes the local records via a multi-path multiplexing structure with convolutional kernels of exclusive sizes. Finally, a multi-feature fusion module is used to improve the accuracy of the diabetic retinopathy classification model. Two public datasets and a real hospital dataset are used to validate the algorithm. The accuracy is 98.9%, 99.3%, and 98.3%, respectively. The experimental results not only confirm the advancement and practicability of the algorithm in the field of automatic DR diagnosis, but also foretell its broad application prospects in clinical settings, which is expected to provide strong technical support for the early screening and treatment of diabetic retinopathy.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).