SUMO酰化诱导的TRPV1膜定位可抑制胃癌细胞的增殖和迁移。

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2024-09-30 DOI:10.1186/s12964-024-01850-0
Yang Yang, Xiaokun Gu, Weiji Weng, Jinke Cheng, Ou Huang, Si-Jian Pan, Yong Li
{"title":"SUMO酰化诱导的TRPV1膜定位可抑制胃癌细胞的增殖和迁移。","authors":"Yang Yang, Xiaokun Gu, Weiji Weng, Jinke Cheng, Ou Huang, Si-Jian Pan, Yong Li","doi":"10.1186/s12964-024-01850-0","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer (GC) remains a significant health challenge due to its high mortality rate and the limited efficacy of current targeted therapies. A critical barrier in developing more effective treatments is the lack of understanding of specific mechanisms driving GC progression. This study investigates the role of Transient Receptor Potential Vanilloid 1 (TRPV1), a non-selective cation channel known for its high Ca<sup>2+</sup> permeability and tumor-suppressive properties in gastrointestinal cancers. Specifically, we explore the impact of SUMOylation-a dynamic and reversible post-translational modification-on TRPV1's function in GC. We demonstrate that SUMOylation of TRPV1 inhibits cell proliferation and migration in MGC-803 and AGS GC cells. By mutating amino acids near TRPV1's existing SUMO motif (slKpE), we created a bidirectional SUMO motif (EψKψE) that enhances TRPV1 SUMOylation, resulting in further suppression of GC cell proliferation and migration. In vivo studies support these findings, showing that TRPV1 SUMOylation prevents spontaneous tumorigenesis in a mouse GC model. Further investigation reveals that TRPV1 SUMOylation increases the protein's membrane expression by inhibiting its interaction with the adaptor-related protein complex 2 mu 1 subunit (AP2M1). This elevated membrane expression leads to increased intracellular Ca<sup>2+</sup> influx, activating the AMP-activated protein kinase (AMPK) pathway, which in turn inhibits the proliferation and migration of GC cells.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"465"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441086/pdf/","citationCount":"0","resultStr":"{\"title\":\"SUMOylation-induced membrane localization of TRPV1 suppresses proliferation and migration in gastric cancer cells.\",\"authors\":\"Yang Yang, Xiaokun Gu, Weiji Weng, Jinke Cheng, Ou Huang, Si-Jian Pan, Yong Li\",\"doi\":\"10.1186/s12964-024-01850-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gastric cancer (GC) remains a significant health challenge due to its high mortality rate and the limited efficacy of current targeted therapies. A critical barrier in developing more effective treatments is the lack of understanding of specific mechanisms driving GC progression. This study investigates the role of Transient Receptor Potential Vanilloid 1 (TRPV1), a non-selective cation channel known for its high Ca<sup>2+</sup> permeability and tumor-suppressive properties in gastrointestinal cancers. Specifically, we explore the impact of SUMOylation-a dynamic and reversible post-translational modification-on TRPV1's function in GC. We demonstrate that SUMOylation of TRPV1 inhibits cell proliferation and migration in MGC-803 and AGS GC cells. By mutating amino acids near TRPV1's existing SUMO motif (slKpE), we created a bidirectional SUMO motif (EψKψE) that enhances TRPV1 SUMOylation, resulting in further suppression of GC cell proliferation and migration. In vivo studies support these findings, showing that TRPV1 SUMOylation prevents spontaneous tumorigenesis in a mouse GC model. Further investigation reveals that TRPV1 SUMOylation increases the protein's membrane expression by inhibiting its interaction with the adaptor-related protein complex 2 mu 1 subunit (AP2M1). This elevated membrane expression leads to increased intracellular Ca<sup>2+</sup> influx, activating the AMP-activated protein kinase (AMPK) pathway, which in turn inhibits the proliferation and migration of GC cells.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"22 1\",\"pages\":\"465\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441086/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-024-01850-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01850-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胃癌(GC)死亡率高,目前的靶向疗法疗效有限,因此仍是一项重大的健康挑战。开发更有效治疗方法的一个关键障碍是对胃癌进展的具体机制缺乏了解。本研究调查了瞬态受体电位类香草素 1(TRPV1)的作用,TRPV1 是一种非选择性阳离子通道,因其高 Ca2+ 通透性和抑制胃肠道癌症的特性而闻名。我们特别探讨了 SUMOylation(一种动态、可逆的翻译后修饰)对 TRPV1 在胃癌中功能的影响。我们证明,TRPV1 的 SUMOylation 可抑制 MGC-803 和 AGS GC 细胞的增殖和迁移。通过突变 TRPV1 现有 SUMO 基序(slKpE)附近的氨基酸,我们创建了一个双向 SUMO 基序(EψKψE),增强了 TRPV1 的 SUMO 化,从而进一步抑制了 GC 细胞的增殖和迁移。体内研究支持这些发现,研究显示 TRPV1 SUMOylation 能阻止小鼠 GC 模型中肿瘤的自发生成。进一步研究发现,TRPV1 SUMOylation 通过抑制其与适配器相关蛋白复合物 2 mu 1 亚基(AP2M1)的相互作用,增加了该蛋白的膜表达。膜表达的升高导致细胞内 Ca2+ 流入增加,激活了 AMP 激活蛋白激酶 (AMPK) 通路,进而抑制了 GC 细胞的增殖和迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SUMOylation-induced membrane localization of TRPV1 suppresses proliferation and migration in gastric cancer cells.

Gastric cancer (GC) remains a significant health challenge due to its high mortality rate and the limited efficacy of current targeted therapies. A critical barrier in developing more effective treatments is the lack of understanding of specific mechanisms driving GC progression. This study investigates the role of Transient Receptor Potential Vanilloid 1 (TRPV1), a non-selective cation channel known for its high Ca2+ permeability and tumor-suppressive properties in gastrointestinal cancers. Specifically, we explore the impact of SUMOylation-a dynamic and reversible post-translational modification-on TRPV1's function in GC. We demonstrate that SUMOylation of TRPV1 inhibits cell proliferation and migration in MGC-803 and AGS GC cells. By mutating amino acids near TRPV1's existing SUMO motif (slKpE), we created a bidirectional SUMO motif (EψKψE) that enhances TRPV1 SUMOylation, resulting in further suppression of GC cell proliferation and migration. In vivo studies support these findings, showing that TRPV1 SUMOylation prevents spontaneous tumorigenesis in a mouse GC model. Further investigation reveals that TRPV1 SUMOylation increases the protein's membrane expression by inhibiting its interaction with the adaptor-related protein complex 2 mu 1 subunit (AP2M1). This elevated membrane expression leads to increased intracellular Ca2+ influx, activating the AMP-activated protein kinase (AMPK) pathway, which in turn inhibits the proliferation and migration of GC cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
Arachidonic acid impairs natural killer cell functions by disrupting signaling pathways driven by activating receptors and reactive oxygen species. IL-10 mediates pleural remodeling in systemic lupus erythematosus. cGAS/STING in skin melanoma: from molecular mechanisms to therapeutics. Exercise-conditioned plasma ameliorates postoperative cognitive dysfunction by activating hippocampal cholinergic circuit and enhancing BDNF/TrkB signaling. miR-23b-3p, miR-126-3p and GAS5 delivered by extracellular vesicles inhibit breast cancer xenografts in zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1