比较建模揭示了野生酵母模型中非整倍体健康成本的分子决定因素。

IF 11.1 Q1 CELL BIOLOGY Cell genomics Pub Date : 2024-10-09 Epub Date: 2024-09-23 DOI:10.1016/j.xgen.2024.100656
Julie Rojas, James Hose, H Auguste Dutcher, Michael Place, John F Wolters, Chris Todd Hittinger, Audrey P Gasch
{"title":"比较建模揭示了野生酵母模型中非整倍体健康成本的分子决定因素。","authors":"Julie Rojas, James Hose, H Auguste Dutcher, Michael Place, John F Wolters, Chris Todd Hittinger, Audrey P Gasch","doi":"10.1016/j.xgen.2024.100656","DOIUrl":null,"url":null,"abstract":"<p><p>Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will be maintained only if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74%-94% of the variance in aneuploid strains' growth rates is explained by the cumulative cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of small nucleolar RNAs (snoRNAs) and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100656"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative modeling reveals the molecular determinants of aneuploidy fitness cost in a wild yeast model.\",\"authors\":\"Julie Rojas, James Hose, H Auguste Dutcher, Michael Place, John F Wolters, Chris Todd Hittinger, Audrey P Gasch\",\"doi\":\"10.1016/j.xgen.2024.100656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will be maintained only if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74%-94% of the variance in aneuploid strains' growth rates is explained by the cumulative cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of small nucleolar RNAs (snoRNAs) and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100656\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2024.100656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然在许多生物中,非整倍体被认为是有害的,但它也是表型快速进化的基础。然而,只有在收益大于成本的情况下,非整倍体才会被保留下来,而这一点至今仍未被完全理解。为了量化这种代价及其背后的分子决定因素,我们在酿酒酵母(Saccharomyces cerevisiae)中产生了一组染色体重复,并应用比较建模和分子验证来了解非整倍体的毒性。我们的研究表明,非整倍体菌株生长率变异的 74%-94% 是由每条染色体上基因的累积成本以及小核仁 RNA(snoRNA)的有害贡献和 tRNA 的有益影响所解释的。通过机器学习识别有害重复基因的特性,并没有为非整倍体毒性的平衡假说提供支持,反而发现基因长度是预测毒性的最佳指标。我们的研究结果为非整倍体的代价提供了一个通用框架,对疾病生物学和进化具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative modeling reveals the molecular determinants of aneuploidy fitness cost in a wild yeast model.

Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will be maintained only if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74%-94% of the variance in aneuploid strains' growth rates is explained by the cumulative cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of small nucleolar RNAs (snoRNAs) and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
A combined deep learning framework for mammalian m6A site prediction. Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively. Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors. Gene regulatory network inference from CRISPR perturbations in primary CD4+ T cells elucidates the genomic basis of immune disease. Leveraging genomes to support conservation and bioeconomy policies in a megadiverse country.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1