Lars Lind, Mohsen Mazidi, Robert Clarke, Derrick A. Bennett, Rui Zheng
{"title":"英国生物库和中国嘉道理生物库中测量和基因预测的蛋白质水平与心血管疾病。","authors":"Lars Lind, Mohsen Mazidi, Robert Clarke, Derrick A. Bennett, Rui Zheng","doi":"10.1038/s44161-024-00545-6","DOIUrl":null,"url":null,"abstract":"Several large-scale studies have measured plasma levels of the proteome in individuals with cardiovascular diseases (CVDs)1–7. However, since the majority of such proteins are interrelated2, it is difficult for observational studies to distinguish which proteins are likely to be of etiological relevance. Here we evaluate whether plasma levels of 2,919 proteins measured in 52,164 UK Biobank participants are associated with incident myocardial infarction, ischemic stroke or heart failure. Of those proteins, 126 were associated with all three CVD outcomes and 118 were associated with at least one CVD in the China Kadoorie Biobank. Mendelian randomization and colocalization analyses indicated that genetically determined levels of 47 and 18 proteins, respectively, were associated with CVDs, including FGF5, PROCR and FURIN. While the majority of protein–CVD observational associations were noncausal, these three proteins showed evidence to support potential causality and are therefore promising targets for drug treatment for CVD outcomes. Lind et al. investigate the causal relationship between plasma proteins and cardiovascular disease outcomes in patients of European and Chinese descent, identifying FGF5, PROCR and FURIN as promising targets for the development of new drugs.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 10","pages":"1189-1198"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44161-024-00545-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Measured and genetically predicted protein levels and cardiovascular diseases in UK Biobank and China Kadoorie Biobank\",\"authors\":\"Lars Lind, Mohsen Mazidi, Robert Clarke, Derrick A. Bennett, Rui Zheng\",\"doi\":\"10.1038/s44161-024-00545-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several large-scale studies have measured plasma levels of the proteome in individuals with cardiovascular diseases (CVDs)1–7. However, since the majority of such proteins are interrelated2, it is difficult for observational studies to distinguish which proteins are likely to be of etiological relevance. Here we evaluate whether plasma levels of 2,919 proteins measured in 52,164 UK Biobank participants are associated with incident myocardial infarction, ischemic stroke or heart failure. Of those proteins, 126 were associated with all three CVD outcomes and 118 were associated with at least one CVD in the China Kadoorie Biobank. Mendelian randomization and colocalization analyses indicated that genetically determined levels of 47 and 18 proteins, respectively, were associated with CVDs, including FGF5, PROCR and FURIN. While the majority of protein–CVD observational associations were noncausal, these three proteins showed evidence to support potential causality and are therefore promising targets for drug treatment for CVD outcomes. Lind et al. investigate the causal relationship between plasma proteins and cardiovascular disease outcomes in patients of European and Chinese descent, identifying FGF5, PROCR and FURIN as promising targets for the development of new drugs.\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\"3 10\",\"pages\":\"1189-1198\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44161-024-00545-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44161-024-00545-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44161-024-00545-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Measured and genetically predicted protein levels and cardiovascular diseases in UK Biobank and China Kadoorie Biobank
Several large-scale studies have measured plasma levels of the proteome in individuals with cardiovascular diseases (CVDs)1–7. However, since the majority of such proteins are interrelated2, it is difficult for observational studies to distinguish which proteins are likely to be of etiological relevance. Here we evaluate whether plasma levels of 2,919 proteins measured in 52,164 UK Biobank participants are associated with incident myocardial infarction, ischemic stroke or heart failure. Of those proteins, 126 were associated with all three CVD outcomes and 118 were associated with at least one CVD in the China Kadoorie Biobank. Mendelian randomization and colocalization analyses indicated that genetically determined levels of 47 and 18 proteins, respectively, were associated with CVDs, including FGF5, PROCR and FURIN. While the majority of protein–CVD observational associations were noncausal, these three proteins showed evidence to support potential causality and are therefore promising targets for drug treatment for CVD outcomes. Lind et al. investigate the causal relationship between plasma proteins and cardiovascular disease outcomes in patients of European and Chinese descent, identifying FGF5, PROCR and FURIN as promising targets for the development of new drugs.