Mozhgan Dehghan Harati , Jim King , Simon Langer , Florian Binder , Ralf Heilker
{"title":"在 iPSC 衍生的巨噬细胞中重现 NOD/RIPK2 信号。","authors":"Mozhgan Dehghan Harati , Jim King , Simon Langer , Florian Binder , Ralf Heilker","doi":"10.1016/j.slasd.2024.100185","DOIUrl":null,"url":null,"abstract":"<div><div>Human induced pluripotent stem cell (iPSC)-derived macrophages (IDMs) present a valuable substitute for monocyte-derived macrophages (MDMs) in order to study inflammation pathways in vitro. Through optimization of an IDM differentiation protocol, a six-fold increase in the production yield of myeloid progenitors was achieved. The derived IDMs were further characterized with respect to nucleotide-binding oligomerization domain (NOD) and receptor-interacting serine/threonine-protein kinase 2 (RIPK2) signaling, a key regulatory pathway for autoimmune diseases. The IDM cells recapitulated MDM biology with respect to the proinflammatory chemokine and inflammatory cytokine fingerprint more closely than THP-1 cells. When assessing RIPK2 modulation effect on tumor necrosis factor α (TNF-α), a cardinal mediator of inflammation, a similar pharmacological effect of RIPK2 inhibitors was observed in IDMs and MDMs. Additionally, IDMs and MDMs displayed a similar transcription and pathway profile in response to NOD1/2 stimulation and pharmacological inhibition of RIPK2. In summary, the enhanced myeloid production yield in the improved IDM differentiation protocol offers new opportunities for utilizing physiologically relevant macrophage models in the context of inflammatory diseases.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recapitulation of NOD/RIPK2 signaling in iPSC-derived macrophages\",\"authors\":\"Mozhgan Dehghan Harati , Jim King , Simon Langer , Florian Binder , Ralf Heilker\",\"doi\":\"10.1016/j.slasd.2024.100185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Human induced pluripotent stem cell (iPSC)-derived macrophages (IDMs) present a valuable substitute for monocyte-derived macrophages (MDMs) in order to study inflammation pathways in vitro. Through optimization of an IDM differentiation protocol, a six-fold increase in the production yield of myeloid progenitors was achieved. The derived IDMs were further characterized with respect to nucleotide-binding oligomerization domain (NOD) and receptor-interacting serine/threonine-protein kinase 2 (RIPK2) signaling, a key regulatory pathway for autoimmune diseases. The IDM cells recapitulated MDM biology with respect to the proinflammatory chemokine and inflammatory cytokine fingerprint more closely than THP-1 cells. When assessing RIPK2 modulation effect on tumor necrosis factor α (TNF-α), a cardinal mediator of inflammation, a similar pharmacological effect of RIPK2 inhibitors was observed in IDMs and MDMs. Additionally, IDMs and MDMs displayed a similar transcription and pathway profile in response to NOD1/2 stimulation and pharmacological inhibition of RIPK2. In summary, the enhanced myeloid production yield in the improved IDM differentiation protocol offers new opportunities for utilizing physiologically relevant macrophage models in the context of inflammatory diseases.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472555224000479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555224000479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Recapitulation of NOD/RIPK2 signaling in iPSC-derived macrophages
Human induced pluripotent stem cell (iPSC)-derived macrophages (IDMs) present a valuable substitute for monocyte-derived macrophages (MDMs) in order to study inflammation pathways in vitro. Through optimization of an IDM differentiation protocol, a six-fold increase in the production yield of myeloid progenitors was achieved. The derived IDMs were further characterized with respect to nucleotide-binding oligomerization domain (NOD) and receptor-interacting serine/threonine-protein kinase 2 (RIPK2) signaling, a key regulatory pathway for autoimmune diseases. The IDM cells recapitulated MDM biology with respect to the proinflammatory chemokine and inflammatory cytokine fingerprint more closely than THP-1 cells. When assessing RIPK2 modulation effect on tumor necrosis factor α (TNF-α), a cardinal mediator of inflammation, a similar pharmacological effect of RIPK2 inhibitors was observed in IDMs and MDMs. Additionally, IDMs and MDMs displayed a similar transcription and pathway profile in response to NOD1/2 stimulation and pharmacological inhibition of RIPK2. In summary, the enhanced myeloid production yield in the improved IDM differentiation protocol offers new opportunities for utilizing physiologically relevant macrophage models in the context of inflammatory diseases.