Faezeh Fathi, Tatiane O X Machado, Helena de A C Kodel, Isabella Portugal, Inês O Ferreira, Aleksandra Zielinska, M Beatriz P P Oliveira, Eliana B Souto
{"title":"固体脂质纳米颗粒(SLN)和纳米结构脂质载体(NLC)用于输送来自植物的生物活性物质:第二部分--应用和临床前进展。","authors":"Faezeh Fathi, Tatiane O X Machado, Helena de A C Kodel, Isabella Portugal, Inês O Ferreira, Aleksandra Zielinska, M Beatriz P P Oliveira, Eliana B Souto","doi":"10.1080/17425247.2024.2410949","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Numerous purified bioactive compounds, crude extracts, and essential oils have demonstrated potent antioxidant, antimicrobial, anti-inflammatory, and antiviral properties, particularly in vitro or in silico; however, their in vivo applications are hindered by inadequate absorption and distribution in the organism. The incorporation of these phytochemicals into solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) has demonstrated significant advancements and represents a viable approach to improve their bioavailability through different administration routes.</p><p><strong>Areas covered: </strong>This review discusses the potential applications of SLN and NLC, loading bioactive compounds sourced from plants for the treatment of several diseases. An overview of the preclinical developments on the use of these lipid nanoparticles is also provided as well as the requisites to be launched on the market.</p><p><strong>Expert opinion: </strong>Medicinal plants have gained even more value for the pharmaceutical industries and their customers, leading to many studies exploring their therapeutic potential. Several bioactives derived from plants with antiviral, anticancer, neuroprotective, antioxidant, and antiaging properties have been proposed and loaded into lipid nanoparticles. <i>In vitro</i> and <i>invivo</i> studies corroborate the added value of SLN/NLC to improve the bioavailability of several bioactives. Surface modification to increase their stability and target delivery should be considering.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1491-1499"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part II - applications and preclinical advancements.\",\"authors\":\"Faezeh Fathi, Tatiane O X Machado, Helena de A C Kodel, Isabella Portugal, Inês O Ferreira, Aleksandra Zielinska, M Beatriz P P Oliveira, Eliana B Souto\",\"doi\":\"10.1080/17425247.2024.2410949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Numerous purified bioactive compounds, crude extracts, and essential oils have demonstrated potent antioxidant, antimicrobial, anti-inflammatory, and antiviral properties, particularly in vitro or in silico; however, their in vivo applications are hindered by inadequate absorption and distribution in the organism. The incorporation of these phytochemicals into solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) has demonstrated significant advancements and represents a viable approach to improve their bioavailability through different administration routes.</p><p><strong>Areas covered: </strong>This review discusses the potential applications of SLN and NLC, loading bioactive compounds sourced from plants for the treatment of several diseases. An overview of the preclinical developments on the use of these lipid nanoparticles is also provided as well as the requisites to be launched on the market.</p><p><strong>Expert opinion: </strong>Medicinal plants have gained even more value for the pharmaceutical industries and their customers, leading to many studies exploring their therapeutic potential. Several bioactives derived from plants with antiviral, anticancer, neuroprotective, antioxidant, and antiaging properties have been proposed and loaded into lipid nanoparticles. <i>In vitro</i> and <i>invivo</i> studies corroborate the added value of SLN/NLC to improve the bioavailability of several bioactives. Surface modification to increase their stability and target delivery should be considering.</p>\",\"PeriodicalId\":94004,\"journal\":{\"name\":\"Expert opinion on drug delivery\",\"volume\":\" \",\"pages\":\"1491-1499\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2024.2410949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2024.2410949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part II - applications and preclinical advancements.
Introduction: Numerous purified bioactive compounds, crude extracts, and essential oils have demonstrated potent antioxidant, antimicrobial, anti-inflammatory, and antiviral properties, particularly in vitro or in silico; however, their in vivo applications are hindered by inadequate absorption and distribution in the organism. The incorporation of these phytochemicals into solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) has demonstrated significant advancements and represents a viable approach to improve their bioavailability through different administration routes.
Areas covered: This review discusses the potential applications of SLN and NLC, loading bioactive compounds sourced from plants for the treatment of several diseases. An overview of the preclinical developments on the use of these lipid nanoparticles is also provided as well as the requisites to be launched on the market.
Expert opinion: Medicinal plants have gained even more value for the pharmaceutical industries and their customers, leading to many studies exploring their therapeutic potential. Several bioactives derived from plants with antiviral, anticancer, neuroprotective, antioxidant, and antiaging properties have been proposed and loaded into lipid nanoparticles. In vitro and invivo studies corroborate the added value of SLN/NLC to improve the bioavailability of several bioactives. Surface modification to increase their stability and target delivery should be considering.