光生物调节作为一种潜在的辅助疗法,可提高人工耳蜗植入效率。

IF 1.8 Q2 SURGERY Photobiomodulation, photomedicine, and laser surgery Pub Date : 2024-11-01 Epub Date: 2024-09-30 DOI:10.1089/photob.2024.0097
So-Young Chang, Min Young Lee
{"title":"光生物调节作为一种潜在的辅助疗法,可提高人工耳蜗植入效率。","authors":"So-Young Chang, Min Young Lee","doi":"10.1089/photob.2024.0097","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Objective:</i></b> Photobiomodulation (PBM) is a noninvasive therapeutic modality with widespread applications for modulating various biological processes. Although the exact mechanisms of action remain uncertain, PBM promotes homeostasis through diverse pathways, including reducing inflammation and enhancing tissue recovery. Hearing loss is irreversible in mammals due to the limited regenerative capacity of cochlear hair cells. Cochlear implants offer a solution by electrically stimulating the auditory nerve, bypassing damaged hair cells in individuals with severe hearing loss. However, postoperative inflammatory responses and cochlear nerve fiber damage can compromise implant efficacy. <b><i>Materials and Methods:</i></b> We investigated current strategies to minimize secondary cochlear damage after cochlear implantation and evaluated the potential of PBM as an adjuvant therapeutic approach. <b><i>Results:</i></b> The auditory cell protective effects of PBM could significantly enhance the performance of EAS devices in individuals with residual hearing. Further, postoperative CI is accompanied by an inflammatory response characterized by the upregulation of specific cytokines. <b><i>Conclusion:</i></b> Considering the neuroregenerative potential of PBM, its application as a neuroprotective strategy warrants further validation.</p>","PeriodicalId":94169,"journal":{"name":"Photobiomodulation, photomedicine, and laser surgery","volume":" ","pages":"663-667"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photobiomodulation as a Potential Adjuvant Therapy to Improve Cochlear Implant Efficiency.\",\"authors\":\"So-Young Chang, Min Young Lee\",\"doi\":\"10.1089/photob.2024.0097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Objective:</i></b> Photobiomodulation (PBM) is a noninvasive therapeutic modality with widespread applications for modulating various biological processes. Although the exact mechanisms of action remain uncertain, PBM promotes homeostasis through diverse pathways, including reducing inflammation and enhancing tissue recovery. Hearing loss is irreversible in mammals due to the limited regenerative capacity of cochlear hair cells. Cochlear implants offer a solution by electrically stimulating the auditory nerve, bypassing damaged hair cells in individuals with severe hearing loss. However, postoperative inflammatory responses and cochlear nerve fiber damage can compromise implant efficacy. <b><i>Materials and Methods:</i></b> We investigated current strategies to minimize secondary cochlear damage after cochlear implantation and evaluated the potential of PBM as an adjuvant therapeutic approach. <b><i>Results:</i></b> The auditory cell protective effects of PBM could significantly enhance the performance of EAS devices in individuals with residual hearing. Further, postoperative CI is accompanied by an inflammatory response characterized by the upregulation of specific cytokines. <b><i>Conclusion:</i></b> Considering the neuroregenerative potential of PBM, its application as a neuroprotective strategy warrants further validation.</p>\",\"PeriodicalId\":94169,\"journal\":{\"name\":\"Photobiomodulation, photomedicine, and laser surgery\",\"volume\":\" \",\"pages\":\"663-667\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photobiomodulation, photomedicine, and laser surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/photob.2024.0097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photobiomodulation, photomedicine, and laser surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/photob.2024.0097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

摘要

目的:光生物调节(PBM)是一种非侵入性治疗方式,可广泛应用于调节各种生物过程。尽管确切的作用机制仍不确定,但光生物调节可通过多种途径促进体内平衡,包括减少炎症和促进组织恢复。由于耳蜗毛细胞的再生能力有限,哺乳动物的听力损失是不可逆的。人工耳蜗通过电刺激听觉神经,绕过受损的毛细胞,为重度听力损失患者提供了一种解决方案。然而,术后炎症反应和耳蜗神经纤维损伤会影响植入效果。材料和方法:我们研究了当前最大限度减少人工耳蜗植入术后继发性耳蜗损伤的策略,并评估了 PBM 作为辅助治疗方法的潜力。结果PBM 的听觉细胞保护作用可显著提高 EAS 设备在残余听力患者中的性能。此外,术后 CI 还伴随着以特定细胞因子上调为特征的炎症反应。结论考虑到 PBM 的神经再生潜力,其作为神经保护策略的应用值得进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photobiomodulation as a Potential Adjuvant Therapy to Improve Cochlear Implant Efficiency.

Objective: Photobiomodulation (PBM) is a noninvasive therapeutic modality with widespread applications for modulating various biological processes. Although the exact mechanisms of action remain uncertain, PBM promotes homeostasis through diverse pathways, including reducing inflammation and enhancing tissue recovery. Hearing loss is irreversible in mammals due to the limited regenerative capacity of cochlear hair cells. Cochlear implants offer a solution by electrically stimulating the auditory nerve, bypassing damaged hair cells in individuals with severe hearing loss. However, postoperative inflammatory responses and cochlear nerve fiber damage can compromise implant efficacy. Materials and Methods: We investigated current strategies to minimize secondary cochlear damage after cochlear implantation and evaluated the potential of PBM as an adjuvant therapeutic approach. Results: The auditory cell protective effects of PBM could significantly enhance the performance of EAS devices in individuals with residual hearing. Further, postoperative CI is accompanied by an inflammatory response characterized by the upregulation of specific cytokines. Conclusion: Considering the neuroregenerative potential of PBM, its application as a neuroprotective strategy warrants further validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊介绍: Photobiomodulation, Photomedicine, and Laser Surgery Editor-in-Chief: Michael R Hamblin, PhD Co-Editor-in-Chief: Heidi Abrahamse, PhD
期刊最新文献
"Five-Step" Vaporization of the Prostate Using 180-W XPS Greenlight Laser in Patients with Benign Prostatic Hyperplasia of Large Volume: Improved Efficacy and Safety. Effects of Laser Acupuncture on Metabolic Functions of Sedentary People: A Double-Blind Randomized Clinical Trial. Photobiomodulation as a Potential Adjuvant Therapy to Improve Cochlear Implant Efficiency. The Effect of Photobiomodulation on Bone Mineral Density, Serum Vitamin D, and Bone Formation Markers in Individuals with Complete Spinal Cord Injuries with Osteoporosis. The Effects of Photobiomodulation Therapy in Cubital Tunnel Syndrome, Clinical Trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1