Honokiol通过调节miR-148a-5p-CYP1B1轴对乳腺癌具有抗肿瘤作用

The American journal of Chinese medicine Pub Date : 2024-01-01 Epub Date: 2024-09-30 DOI:10.1142/S0192415X24500721
Xuejiao Han, Yuan Cheng, Zedong Jiang, Aqu Alu, Xuelei Ma
{"title":"Honokiol通过调节miR-148a-5p-CYP1B1轴对乳腺癌具有抗肿瘤作用","authors":"Xuejiao Han, Yuan Cheng, Zedong Jiang, Aqu Alu, Xuelei Ma","doi":"10.1142/S0192415X24500721","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BC) is the most frequently diagnosed malignancy in female patients. There is a significant lack of therapeutic strategies for BC, particularly triple-negative breast cancer (TNBC). Honokiol (HNK), a lignin extracted from the <i>Magnolia</i> genus plant, has demonstrated numerous pharmacological effects. Therefore, this study aims to investigate the antitumor effect of HNK on BC cells and employ high-throughput sequencing to elucidate its potential mechanism. We found that HNK significantly inhibited proliferation and induced apoptosis on BC cell lines in a dose-dependent manner. Moreover, HNK treatment suppressed migration and colony formation and initiated the intrinsic apoptotic pathway specifically in MDA-MB-231 cells. High-throughput sequencing and bioinformatics analysis revealed that miR-148a-5p expression was significantly up-regulated, whereas CYP1B1 expression was down-regulated following HNK treatment. Importantly, survival analysis based on TCGA database showed high miR-148a-5p expression was correlated with a better prognosis for BC patients. Inhibition of miR-148a-5p by inhibitor not only increased cell viability but also attenuated apoptosis induced by HNK. Finally, a strong synergistic effect between HNK and paclitaxel was observed in vitro. In conclusion, our study validated the antitumor efficacy of HNK against human BC cells and elucidated its underlying mechanism through high-throughput sequencing, thereby providing compelling evidence for further exploration of the potential clinical application of HNK towards the treatment of BC.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1843-1861"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Honokiol Exhibits Anti-Tumor Effects in Breast Cancer by Modulating the miR-148a-5p-CYP1B1 Axis.\",\"authors\":\"Xuejiao Han, Yuan Cheng, Zedong Jiang, Aqu Alu, Xuelei Ma\",\"doi\":\"10.1142/S0192415X24500721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer (BC) is the most frequently diagnosed malignancy in female patients. There is a significant lack of therapeutic strategies for BC, particularly triple-negative breast cancer (TNBC). Honokiol (HNK), a lignin extracted from the <i>Magnolia</i> genus plant, has demonstrated numerous pharmacological effects. Therefore, this study aims to investigate the antitumor effect of HNK on BC cells and employ high-throughput sequencing to elucidate its potential mechanism. We found that HNK significantly inhibited proliferation and induced apoptosis on BC cell lines in a dose-dependent manner. Moreover, HNK treatment suppressed migration and colony formation and initiated the intrinsic apoptotic pathway specifically in MDA-MB-231 cells. High-throughput sequencing and bioinformatics analysis revealed that miR-148a-5p expression was significantly up-regulated, whereas CYP1B1 expression was down-regulated following HNK treatment. Importantly, survival analysis based on TCGA database showed high miR-148a-5p expression was correlated with a better prognosis for BC patients. Inhibition of miR-148a-5p by inhibitor not only increased cell viability but also attenuated apoptosis induced by HNK. Finally, a strong synergistic effect between HNK and paclitaxel was observed in vitro. In conclusion, our study validated the antitumor efficacy of HNK against human BC cells and elucidated its underlying mechanism through high-throughput sequencing, thereby providing compelling evidence for further exploration of the potential clinical application of HNK towards the treatment of BC.</p>\",\"PeriodicalId\":94221,\"journal\":{\"name\":\"The American journal of Chinese medicine\",\"volume\":\" \",\"pages\":\"1843-1861\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American journal of Chinese medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0192415X24500721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of Chinese medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0192415X24500721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌(BC)是女性患者中最常确诊的恶性肿瘤。针对乳腺癌,尤其是三阴性乳腺癌(TNBC)的治疗策略非常缺乏。Honokiol(HNK)是从木兰科植物中提取的一种木质素,具有多种药理作用。因此,本研究旨在研究HNK对BC细胞的抗肿瘤作用,并采用高通量测序技术阐明其潜在机制。我们发现,HNK能以剂量依赖的方式明显抑制BC细胞株的增殖并诱导其凋亡。此外,HNK还能抑制MDA-MB-231细胞的迁移和集落形成,并启动其内在凋亡途径。高通量测序和生物信息学分析表明,HNK 处理后,miR-148a-5p 的表达明显上调,而 CYP1B1 的表达下调。重要的是,基于TCGA数据库的生存分析表明,miR-148a-5p的高表达与BC患者较好的预后相关。抑制剂抑制 miR-148a-5p 不仅能提高细胞活力,还能减轻 HNK 诱导的细胞凋亡。最后,在体外观察到 HNK 与紫杉醇之间有很强的协同作用。总之,我们的研究验证了HNK对人类BC细胞的抗肿瘤功效,并通过高通量测序阐明了其潜在机制,从而为进一步探索HNK治疗BC的潜在临床应用提供了有力证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Honokiol Exhibits Anti-Tumor Effects in Breast Cancer by Modulating the miR-148a-5p-CYP1B1 Axis.

Breast cancer (BC) is the most frequently diagnosed malignancy in female patients. There is a significant lack of therapeutic strategies for BC, particularly triple-negative breast cancer (TNBC). Honokiol (HNK), a lignin extracted from the Magnolia genus plant, has demonstrated numerous pharmacological effects. Therefore, this study aims to investigate the antitumor effect of HNK on BC cells and employ high-throughput sequencing to elucidate its potential mechanism. We found that HNK significantly inhibited proliferation and induced apoptosis on BC cell lines in a dose-dependent manner. Moreover, HNK treatment suppressed migration and colony formation and initiated the intrinsic apoptotic pathway specifically in MDA-MB-231 cells. High-throughput sequencing and bioinformatics analysis revealed that miR-148a-5p expression was significantly up-regulated, whereas CYP1B1 expression was down-regulated following HNK treatment. Importantly, survival analysis based on TCGA database showed high miR-148a-5p expression was correlated with a better prognosis for BC patients. Inhibition of miR-148a-5p by inhibitor not only increased cell viability but also attenuated apoptosis induced by HNK. Finally, a strong synergistic effect between HNK and paclitaxel was observed in vitro. In conclusion, our study validated the antitumor efficacy of HNK against human BC cells and elucidated its underlying mechanism through high-throughput sequencing, thereby providing compelling evidence for further exploration of the potential clinical application of HNK towards the treatment of BC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Schisandrin a Ameliorates Cardiac Injury and Dysfunction Induced by Hemorrhagic Shock via Activating the Nrf2 Signaling Pathway. Therapeutic Targets and Natural Product Screening for Cognitive Impairments Associated with Ferroptosis in Wilson's Disease. Cinnamon for Metabolic Diseases and Their Cardiovascular and Hepatic Complications: A Mechanistic Review. Luteolin: A Comprehensive and Visualized Analysis of Research Hotspots and its Antitumor Mechanisms. Targeting Autophagy with Geniposide Ameliorates Atherosclerosis in [Formula: see text] Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1