优于总变异正则化。

International journal of biomedical research & practice Pub Date : 2024-01-01 Epub Date: 2024-06-21
Gengsheng L Zeng
{"title":"优于总变异正则化。","authors":"Gengsheng L Zeng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The total variation (TV) regularization is popular in iterative image reconstruction when the piecewise-constant nature of the image is encouraged. As a matter of fact, the TV regularization is not strong enough to enforce the piecewise-constant appearance. This paper suggests a different regularization function that is able to discourage some smooth transitions in the image and to encourage the piecewise-constant behavior. This new regularization function involves a Gaussian function. We use the limited-angle tomography problem to illustrate the effectiveness of this new regularization function. The limited-angle tomography situation considered in this paper uses a scanning angular range of <math><mrow><mn>40</mn></mrow> <mrow><mo>°</mo></mrow> </math> . For two-dimensional parallel-beam imaging, the required angular range is supposed to be <math><mrow><mn>180</mn></mrow> <mrow><mo>°</mo></mrow> </math> .</p>","PeriodicalId":520232,"journal":{"name":"International journal of biomedical research & practice","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423893/pdf/","citationCount":"0","resultStr":"{\"title\":\"Better than the Total Variation Regularization.\",\"authors\":\"Gengsheng L Zeng\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The total variation (TV) regularization is popular in iterative image reconstruction when the piecewise-constant nature of the image is encouraged. As a matter of fact, the TV regularization is not strong enough to enforce the piecewise-constant appearance. This paper suggests a different regularization function that is able to discourage some smooth transitions in the image and to encourage the piecewise-constant behavior. This new regularization function involves a Gaussian function. We use the limited-angle tomography problem to illustrate the effectiveness of this new regularization function. The limited-angle tomography situation considered in this paper uses a scanning angular range of <math><mrow><mn>40</mn></mrow> <mrow><mo>°</mo></mrow> </math> . For two-dimensional parallel-beam imaging, the required angular range is supposed to be <math><mrow><mn>180</mn></mrow> <mrow><mo>°</mo></mrow> </math> .</p>\",\"PeriodicalId\":520232,\"journal\":{\"name\":\"International journal of biomedical research & practice\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423893/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of biomedical research & practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of biomedical research & practice","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

总变化(TV)正则化在迭代图像重建中很受欢迎,因为它鼓励图像的片断不变性。事实上,TV 正则化的强度不足以实现片断不变的外观。本文提出了一种不同的正则化函数,它能够抑制图像中的一些平滑过渡,并鼓励片断恒定行为。这种新的正则化函数涉及一个高斯函数。我们使用有限角度断层扫描问题来说明这种新正则化函数的有效性。本文考虑的有限角度断层扫描情况使用 40 ° 的扫描角度范围。对于二维平行光束成像,所需的角度范围应该是 180 °。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Better than the Total Variation Regularization.

The total variation (TV) regularization is popular in iterative image reconstruction when the piecewise-constant nature of the image is encouraged. As a matter of fact, the TV regularization is not strong enough to enforce the piecewise-constant appearance. This paper suggests a different regularization function that is able to discourage some smooth transitions in the image and to encourage the piecewise-constant behavior. This new regularization function involves a Gaussian function. We use the limited-angle tomography problem to illustrate the effectiveness of this new regularization function. The limited-angle tomography situation considered in this paper uses a scanning angular range of 40 ° . For two-dimensional parallel-beam imaging, the required angular range is supposed to be 180 ° .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Better than the Total Variation Regularization. One-Step Image Reconstruction for Cine MRI with a Quadratic Constraint.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1