首页 > 最新文献

International journal of biomedical research & practice最新文献

英文 中文
Better than the Total Variation Regularization. 优于总变异正则化。
Pub Date : 2024-01-01 Epub Date: 2024-06-21
Gengsheng L Zeng

The total variation (TV) regularization is popular in iterative image reconstruction when the piecewise-constant nature of the image is encouraged. As a matter of fact, the TV regularization is not strong enough to enforce the piecewise-constant appearance. This paper suggests a different regularization function that is able to discourage some smooth transitions in the image and to encourage the piecewise-constant behavior. This new regularization function involves a Gaussian function. We use the limited-angle tomography problem to illustrate the effectiveness of this new regularization function. The limited-angle tomography situation considered in this paper uses a scanning angular range of 40 ° . For two-dimensional parallel-beam imaging, the required angular range is supposed to be 180 ° .

总变化(TV)正则化在迭代图像重建中很受欢迎,因为它鼓励图像的片断不变性。事实上,TV 正则化的强度不足以实现片断不变的外观。本文提出了一种不同的正则化函数,它能够抑制图像中的一些平滑过渡,并鼓励片断恒定行为。这种新的正则化函数涉及一个高斯函数。我们使用有限角度断层扫描问题来说明这种新正则化函数的有效性。本文考虑的有限角度断层扫描情况使用 40 ° 的扫描角度范围。对于二维平行光束成像,所需的角度范围应该是 180 °。
{"title":"Better than the Total Variation Regularization.","authors":"Gengsheng L Zeng","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The total variation (TV) regularization is popular in iterative image reconstruction when the piecewise-constant nature of the image is encouraged. As a matter of fact, the TV regularization is not strong enough to enforce the piecewise-constant appearance. This paper suggests a different regularization function that is able to discourage some smooth transitions in the image and to encourage the piecewise-constant behavior. This new regularization function involves a Gaussian function. We use the limited-angle tomography problem to illustrate the effectiveness of this new regularization function. The limited-angle tomography situation considered in this paper uses a scanning angular range of <math><mrow><mn>40</mn></mrow> <mrow><mo>°</mo></mrow> </math> . For two-dimensional parallel-beam imaging, the required angular range is supposed to be <math><mrow><mn>180</mn></mrow> <mrow><mo>°</mo></mrow> </math> .</p>","PeriodicalId":520232,"journal":{"name":"International journal of biomedical research & practice","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423893/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142336206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-Step Image Reconstruction for Cine MRI with a Quadratic Constraint. 带二次约束的线性磁共振成像的一步式图像重建
Pub Date : 2024-01-01 Epub Date: 2024-06-16 DOI: 10.33425/2769-6294.1029
Gengsheng L Zeng, Xiaodong Ma, Chun Yuan

Motivation: In cine MRI, the measurements within each timeframe alone are too noisy for image reconstruction. Some information must be 'borrowed' from other time frames and the reconstruction algorithm is a slow iterative procedure.

Goals: We set up a constrained objective function, which uses the measurements at other time frames to regularize the image reconstruction. We derive a non-iterative algorithm to minimize this objective function.

Approach: The derivation of the algorithm is based on the calculus of variations. The resultant algorithm is in the form of filtered backprojection.

Results: The feasibility of the proposed algorithm is demonstrated with a clinical patient brain study.

Impact: Non-iterative reconstruction that minimizes a constrained objective function significantly increases the throughput in healthcare institutions. This may translate to reduced healthcare costs. The new reconstruction formula has a closed form that gives an explicit expression of how to incorporate the reference image in dynamic reconstruction.

{"title":"One-Step Image Reconstruction for Cine MRI with a Quadratic Constraint.","authors":"Gengsheng L Zeng, Xiaodong Ma, Chun Yuan","doi":"10.33425/2769-6294.1029","DOIUrl":"10.33425/2769-6294.1029","url":null,"abstract":"<p><strong>Motivation: </strong>In cine MRI, the measurements within each timeframe alone are too noisy for image reconstruction. Some information must be 'borrowed' from other time frames and the reconstruction algorithm is a slow iterative procedure.</p><p><strong>Goals: </strong>We set up a constrained objective function, which uses the measurements at other time frames to regularize the image reconstruction. We derive a non-iterative algorithm to minimize this objective function.</p><p><strong>Approach: </strong>The derivation of the algorithm is based on the calculus of variations. The resultant algorithm is in the form of filtered backprojection.</p><p><strong>Results: </strong>The feasibility of the proposed algorithm is demonstrated with a clinical patient brain study.</p><p><strong>Impact: </strong>Non-iterative reconstruction that minimizes a constrained objective function significantly increases the throughput in healthcare institutions. This may translate to reduced healthcare costs. The new reconstruction formula has a closed form that gives an explicit expression of how to incorporate the reference image in dynamic reconstruction.</p>","PeriodicalId":520232,"journal":{"name":"International journal of biomedical research & practice","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670894/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International journal of biomedical research & practice
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1