Casian Miron, George Ciubotariu, Alexandru Păsărică, Radu Timofte
{"title":"用于注视点估计的高效端到端卷积架构","authors":"Casian Miron, George Ciubotariu, Alexandru Păsărică, Radu Timofte","doi":"10.3390/jimaging10090237","DOIUrl":null,"url":null,"abstract":"<p><p>Point-of-gaze estimation is part of a larger set of tasks aimed at improving user experience, providing business insights, or facilitating interactions with different devices. There has been a growing interest in this task, particularly due to the need for upgrades in e-meeting platforms during the pandemic when on-site activities were no longer possible for educational institutions, corporations, and other organizations. Current research advancements are focusing on more complex methodologies for data collection and task implementation, creating a gap that we intend to address with our contributions. Thus, we introduce a methodology for data acquisition that shows promise due to its nonrestrictive and straightforward nature, notably increasing the yield of collected data without compromising diversity or quality. Additionally, we present a novel and efficient convolutional neural network specifically tailored for calibration-free point-of-gaze estimation that outperforms current state-of-the-art methods on the MPIIFaceGaze dataset by a substantial margin, and sets a strong baseline on our own data.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433013/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient End-to-End Convolutional Architecture for Point-of-Gaze Estimation.\",\"authors\":\"Casian Miron, George Ciubotariu, Alexandru Păsărică, Radu Timofte\",\"doi\":\"10.3390/jimaging10090237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Point-of-gaze estimation is part of a larger set of tasks aimed at improving user experience, providing business insights, or facilitating interactions with different devices. There has been a growing interest in this task, particularly due to the need for upgrades in e-meeting platforms during the pandemic when on-site activities were no longer possible for educational institutions, corporations, and other organizations. Current research advancements are focusing on more complex methodologies for data collection and task implementation, creating a gap that we intend to address with our contributions. Thus, we introduce a methodology for data acquisition that shows promise due to its nonrestrictive and straightforward nature, notably increasing the yield of collected data without compromising diversity or quality. Additionally, we present a novel and efficient convolutional neural network specifically tailored for calibration-free point-of-gaze estimation that outperforms current state-of-the-art methods on the MPIIFaceGaze dataset by a substantial margin, and sets a strong baseline on our own data.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433013/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging10090237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10090237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Efficient End-to-End Convolutional Architecture for Point-of-Gaze Estimation.
Point-of-gaze estimation is part of a larger set of tasks aimed at improving user experience, providing business insights, or facilitating interactions with different devices. There has been a growing interest in this task, particularly due to the need for upgrades in e-meeting platforms during the pandemic when on-site activities were no longer possible for educational institutions, corporations, and other organizations. Current research advancements are focusing on more complex methodologies for data collection and task implementation, creating a gap that we intend to address with our contributions. Thus, we introduce a methodology for data acquisition that shows promise due to its nonrestrictive and straightforward nature, notably increasing the yield of collected data without compromising diversity or quality. Additionally, we present a novel and efficient convolutional neural network specifically tailored for calibration-free point-of-gaze estimation that outperforms current state-of-the-art methods on the MPIIFaceGaze dataset by a substantial margin, and sets a strong baseline on our own data.