Tian Zeng, Jie Liu, Cham Wah Cheung, Youzhi Li, Han Jia, Edmund Chun Ming Tse, Ying Li
{"title":"用于抑制和消除生物膜的锰络合物-金纳米粒子混合物","authors":"Tian Zeng, Jie Liu, Cham Wah Cheung, Youzhi Li, Han Jia, Edmund Chun Ming Tse, Ying Li","doi":"10.1002/cbic.202400500","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms, which are resistant to conventional antimicrobial treatments, pose significant challenges in medical and industrial environments. This study introduces manganese complex-gold nanoparticles (Mn-DPA-AuNPs) as a hybrid strategy for biofilm inhibition and eradication. Upon exposure to green light, these nanoparticles significantly enhance the generation of reactive oxygen species (ROS), including hydrogen peroxide and superoxide. This activity substantially reduces the regrowth potential of the surviving bacteria within the biofilm, with marked efficacy noted in Pseudomonas aeruginosa PAO1. This study highlights the potential of integrating manganese complexes with gold nanoparticles to develop advanced antimicrobial agents against resistant biofilms, offering a promising approach to enhance microbial control in diverse settings.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manganese Complex-Gold Nanoparticle Hybrid for Biofilm Inhibition and Eradication.\",\"authors\":\"Tian Zeng, Jie Liu, Cham Wah Cheung, Youzhi Li, Han Jia, Edmund Chun Ming Tse, Ying Li\",\"doi\":\"10.1002/cbic.202400500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biofilms, which are resistant to conventional antimicrobial treatments, pose significant challenges in medical and industrial environments. This study introduces manganese complex-gold nanoparticles (Mn-DPA-AuNPs) as a hybrid strategy for biofilm inhibition and eradication. Upon exposure to green light, these nanoparticles significantly enhance the generation of reactive oxygen species (ROS), including hydrogen peroxide and superoxide. This activity substantially reduces the regrowth potential of the surviving bacteria within the biofilm, with marked efficacy noted in Pseudomonas aeruginosa PAO1. This study highlights the potential of integrating manganese complexes with gold nanoparticles to develop advanced antimicrobial agents against resistant biofilms, offering a promising approach to enhance microbial control in diverse settings.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202400500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Manganese Complex-Gold Nanoparticle Hybrid for Biofilm Inhibition and Eradication.
Biofilms, which are resistant to conventional antimicrobial treatments, pose significant challenges in medical and industrial environments. This study introduces manganese complex-gold nanoparticles (Mn-DPA-AuNPs) as a hybrid strategy for biofilm inhibition and eradication. Upon exposure to green light, these nanoparticles significantly enhance the generation of reactive oxygen species (ROS), including hydrogen peroxide and superoxide. This activity substantially reduces the regrowth potential of the surviving bacteria within the biofilm, with marked efficacy noted in Pseudomonas aeruginosa PAO1. This study highlights the potential of integrating manganese complexes with gold nanoparticles to develop advanced antimicrobial agents against resistant biofilms, offering a promising approach to enhance microbial control in diverse settings.