{"title":"用于在水中整体光催化合成 H2O2 的芘基共价有机框架的界面设计。","authors":"Mengqi Zhang, Rongchen Liu, Fulin Zhang, Hongxiang Zhao, Xia Li, Xianjun Lang, Zhiguang Guo","doi":"10.1016/j.jcis.2024.09.189","DOIUrl":null,"url":null,"abstract":"<p><p>Covalent organic frameworks (COFs) have shown great potential in the photocatalytic production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) due to their precisely designed and customized ability. Nevertheless, the quest for efficient overall photosynthesis of H<sub>2</sub>O<sub>2</sub> in pure water without sacrificial agents using COF photocatalysts remains a formidable challenge. Herein, three pyrene-based covalent organic frameworks are synthesized using an advanced interfacial design strategy. By incorporating functional groups of F, H, and OH into a COF skeleton, their wettability and charge-separation properties are fine-tuned. These COFs show great performances as photocatalysts for H<sub>2</sub>O<sub>2</sub> production from water and air by utilizing both the oxygen reduction reaction and water oxidation reaction pathways. Compared to PyCOF-F and PyCOF-H, PyCOF-OH demonstrates superior H<sub>2</sub>O<sub>2</sub> production efficiency due to its improved hydrophilicity and enhanced carrier separation, achieving a remarkable rate of 2961 µmol g<sup>-1</sup> h<sup>-1</sup> from 25 mL pure water and air. Further, the mechanism of H<sub>2</sub>O<sub>2</sub> production over PyCOF-OH is clarified by combining a series of control experiments, in situ characterizations, and theoretical calculations. This study offers valuable insights into the interfacial design of high-performance photocatalysts for H<sub>2</sub>O<sub>2</sub> synthesis.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"678 Pt C","pages":"1170-1180"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis in water.\",\"authors\":\"Mengqi Zhang, Rongchen Liu, Fulin Zhang, Hongxiang Zhao, Xia Li, Xianjun Lang, Zhiguang Guo\",\"doi\":\"10.1016/j.jcis.2024.09.189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Covalent organic frameworks (COFs) have shown great potential in the photocatalytic production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) due to their precisely designed and customized ability. Nevertheless, the quest for efficient overall photosynthesis of H<sub>2</sub>O<sub>2</sub> in pure water without sacrificial agents using COF photocatalysts remains a formidable challenge. Herein, three pyrene-based covalent organic frameworks are synthesized using an advanced interfacial design strategy. By incorporating functional groups of F, H, and OH into a COF skeleton, their wettability and charge-separation properties are fine-tuned. These COFs show great performances as photocatalysts for H<sub>2</sub>O<sub>2</sub> production from water and air by utilizing both the oxygen reduction reaction and water oxidation reaction pathways. Compared to PyCOF-F and PyCOF-H, PyCOF-OH demonstrates superior H<sub>2</sub>O<sub>2</sub> production efficiency due to its improved hydrophilicity and enhanced carrier separation, achieving a remarkable rate of 2961 µmol g<sup>-1</sup> h<sup>-1</sup> from 25 mL pure water and air. Further, the mechanism of H<sub>2</sub>O<sub>2</sub> production over PyCOF-OH is clarified by combining a series of control experiments, in situ characterizations, and theoretical calculations. This study offers valuable insights into the interfacial design of high-performance photocatalysts for H<sub>2</sub>O<sub>2</sub> synthesis.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"678 Pt C\",\"pages\":\"1170-1180\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.09.189\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.09.189","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water.
Covalent organic frameworks (COFs) have shown great potential in the photocatalytic production of hydrogen peroxide (H2O2) due to their precisely designed and customized ability. Nevertheless, the quest for efficient overall photosynthesis of H2O2 in pure water without sacrificial agents using COF photocatalysts remains a formidable challenge. Herein, three pyrene-based covalent organic frameworks are synthesized using an advanced interfacial design strategy. By incorporating functional groups of F, H, and OH into a COF skeleton, their wettability and charge-separation properties are fine-tuned. These COFs show great performances as photocatalysts for H2O2 production from water and air by utilizing both the oxygen reduction reaction and water oxidation reaction pathways. Compared to PyCOF-F and PyCOF-H, PyCOF-OH demonstrates superior H2O2 production efficiency due to its improved hydrophilicity and enhanced carrier separation, achieving a remarkable rate of 2961 µmol g-1 h-1 from 25 mL pure water and air. Further, the mechanism of H2O2 production over PyCOF-OH is clarified by combining a series of control experiments, in situ characterizations, and theoretical calculations. This study offers valuable insights into the interfacial design of high-performance photocatalysts for H2O2 synthesis.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies