Fe3O4@氮掺杂碳@钯核双壳纳米管作为新型纳米吸附剂用于超声波辅助分散磁性固相萃取有机磷农药。

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2025-01-01 Epub Date: 2024-09-18 DOI:10.1016/j.talanta.2024.126911
Zolfaghar Aladaghlo, Ali Sahragard, Alireza Fakhari, Neda Salarinejad, Siyavash Kazemi Movahed, Minoo Dabiri
{"title":"Fe3O4@氮掺杂碳@钯核双壳纳米管作为新型纳米吸附剂用于超声波辅助分散磁性固相萃取有机磷农药。","authors":"Zolfaghar Aladaghlo, Ali Sahragard, Alireza Fakhari, Neda Salarinejad, Siyavash Kazemi Movahed, Minoo Dabiri","doi":"10.1016/j.talanta.2024.126911","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, an ultrasonic assisted dispersive magnetic solid phase extraction leveraging Fe<sub>3</sub>O<sub>4</sub>@nitrogen-doped carbon@Pd core-double shell nanotubes was developed for the extraction of organophosphorus pesticides (OPPs) in trace levels from real samples. Incorporation of Pd species into the structure of the nanosorbent could enhance its interactions with sulfur groups in the structure of OPPs. X-ray photoelectron spectroscopy and X-ray diffraction, brunauer-emmett-teller, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to characterize the nanosorbent after its synthesis. Then, effective variables on the extraction efficiency of OPPs using the nanosorbent were optimized. These parameters included 2-propanol as the adsorption solvent; the sample pH of 7.0; the sorbent quantity of 10 mg; and the extraction and desorption times of 3 min. Under optimized conditions, linear ranges with determination coefficients (R<sup>2</sup>) higher than 0.99, low detection limits of 0.30 ng mL<sup>-1</sup>, high preconcentration factors (423-470) and relatively high extraction recoveries (84-94 %) were obtained. The proposed extraction system was then successfully applied to the analysis of OPPs in fruits, vegetables, water, and agricultural soil samples, yielding relative recoveries from 90.4 to 107 %.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe<sub>3</sub>O<sub>4</sub>@nitrogen-doped carbon@Pd core-double shell nanotubes as a novel nanosorbent for ultrasonic assisted dispersive magnetic solid phase extraction of organophosphorus pesticides.\",\"authors\":\"Zolfaghar Aladaghlo, Ali Sahragard, Alireza Fakhari, Neda Salarinejad, Siyavash Kazemi Movahed, Minoo Dabiri\",\"doi\":\"10.1016/j.talanta.2024.126911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, an ultrasonic assisted dispersive magnetic solid phase extraction leveraging Fe<sub>3</sub>O<sub>4</sub>@nitrogen-doped carbon@Pd core-double shell nanotubes was developed for the extraction of organophosphorus pesticides (OPPs) in trace levels from real samples. Incorporation of Pd species into the structure of the nanosorbent could enhance its interactions with sulfur groups in the structure of OPPs. X-ray photoelectron spectroscopy and X-ray diffraction, brunauer-emmett-teller, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to characterize the nanosorbent after its synthesis. Then, effective variables on the extraction efficiency of OPPs using the nanosorbent were optimized. These parameters included 2-propanol as the adsorption solvent; the sample pH of 7.0; the sorbent quantity of 10 mg; and the extraction and desorption times of 3 min. Under optimized conditions, linear ranges with determination coefficients (R<sup>2</sup>) higher than 0.99, low detection limits of 0.30 ng mL<sup>-1</sup>, high preconcentration factors (423-470) and relatively high extraction recoveries (84-94 %) were obtained. The proposed extraction system was then successfully applied to the analysis of OPPs in fruits, vegetables, water, and agricultural soil samples, yielding relative recoveries from 90.4 to 107 %.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.126911\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126911","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了一种超声波辅助分散磁性固相萃取技术,利用Fe3O4@氮掺杂碳@Pd核双壳纳米管从实际样品中萃取痕量有机磷农药(OPPs)。在纳米吸附剂结构中加入钯元素可增强其与 OPPs 结构中硫基团的相互作用。纳米吸附剂合成后,采用了 X 射线光电子能谱和 X 射线衍射、布伦纳-埃米特-泰勒、场发射扫描电子显微镜和高分辨率透射电子显微镜对其进行了表征。然后,对使用纳米吸附剂萃取 OPPs 的有效变量进行了优化。这些参数包括:吸附溶剂为 2-丙醇;样品 pH 值为 7.0;吸附剂用量为 10 毫克;萃取和解吸时间为 3 分钟。在优化条件下,萃取的线性范围和测定系数(R2)均大于 0.99,检出限低至 0.30 ng mL-1,预浓缩倍数高(423-470),萃取回收率相对较高(84-94 %)。随后,该萃取系统被成功应用于水果、蔬菜、水和农业土壤样品中 OPPs 的分析,相对回收率为 90.4% 至 107%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe3O4@nitrogen-doped carbon@Pd core-double shell nanotubes as a novel nanosorbent for ultrasonic assisted dispersive magnetic solid phase extraction of organophosphorus pesticides.

In this study, an ultrasonic assisted dispersive magnetic solid phase extraction leveraging Fe3O4@nitrogen-doped carbon@Pd core-double shell nanotubes was developed for the extraction of organophosphorus pesticides (OPPs) in trace levels from real samples. Incorporation of Pd species into the structure of the nanosorbent could enhance its interactions with sulfur groups in the structure of OPPs. X-ray photoelectron spectroscopy and X-ray diffraction, brunauer-emmett-teller, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to characterize the nanosorbent after its synthesis. Then, effective variables on the extraction efficiency of OPPs using the nanosorbent were optimized. These parameters included 2-propanol as the adsorption solvent; the sample pH of 7.0; the sorbent quantity of 10 mg; and the extraction and desorption times of 3 min. Under optimized conditions, linear ranges with determination coefficients (R2) higher than 0.99, low detection limits of 0.30 ng mL-1, high preconcentration factors (423-470) and relatively high extraction recoveries (84-94 %) were obtained. The proposed extraction system was then successfully applied to the analysis of OPPs in fruits, vegetables, water, and agricultural soil samples, yielding relative recoveries from 90.4 to 107 %.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
A one-pot isothermal Fluorogenic Mango II arrays-based assay for label-free detection of miRNA. A semiconductor SERS sensor of corrosion-resistant PPy/GO composite film by electrochemical growth for detecting crystal violet residues in fresh fish tissue. A simple and accurate method for the determination of Rh, Pd, and Pt in e-waste and spent automotive catalysts using HR-CS FAAS for assessing the value of secondary raw materials. A smartphone-based multichannel magnetoelastic immunosensor for acute aortic dissection supplementary diagnosis. Achieving precise dual detection: One-tube reverse transcription-recombinase aided amplification (RT-RAA) combined with lateral flow strip (LFS) assay for RNA and DNA target genes from pepper mild mottle virus and Colletotrichum species in crude plant samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1