Sarmento J Mazivila, Jose X Soares, Rui A S Lapa, M Lúcia M F S Saraiva, Jose O Fernandes, Sara C Cunha, Joao L M Santos
{"title":"非负性约束下的 PARAFAC 适用于恢复从分析物触发的半导体 QDs 光致发光调制中获得的激发-发射荧光矩阵测量的基本比尔-朗伯定律。何时以及为何?","authors":"Sarmento J Mazivila, Jose X Soares, Rui A S Lapa, M Lúcia M F S Saraiva, Jose O Fernandes, Sara C Cunha, Joao L M Santos","doi":"10.1016/j.talanta.2024.126896","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Analyte-triggered semiconductor quantum dots (QDs) modulation in the presence of non-consistently responsive fluorescent species represents a challenging analytical issue in concrete multi-way data handling. QDs with heterogeneous sizes and/or uneven distribution of functional moieties on their surfaces exhibit significant fluctuations in the fluorescent response components, known as chemical rank, across different excitation/emission modes. This phenomenon may lead to a substantial deviation from the proportionality prescribed by Beer-Lambert law. Nonetheless, even in the presence of such deviation, a multi-way model may be successfully selected after determining a proper chemical rank in a QDs system.</p><p><strong>Results: </strong>We show that in a valid PARAllel FACtor (PARAFAC) model under properly determined chemical rank, meaningfully resolved pure spectral profiles can be reached for each fluorescent responsive constituent in the original excitation-emission fluorescence matrix (EEFM) measurements. This was thoroughly illustrated by applying PARAFAC trilinear decomposition of a three-way data array of two distinct datasets acquired from semiconductor QDs sensing systems with low-rank trilinear assumption. The first dataset, presented here for the first time, comprises EEFM measurements of the ligand-driven quenching of thiomalic acid (TMA)-capped AgInS<sub>2</sub> (AIS) QDs by vomitoxin. The second dataset, employed for illustrative purposes, comprises EEFM measurements of the quenching, via cation bridging, of glutathione (GSH)-capped CdTe QDs by Pb(II). The results of this study enabled the determination of vomitoxin at a ppb level in real samples of fish feeds, showcasing the efficacy of the PARAFAC model in resolving spectral signatures (loadings) and pure concentration profiles (scores).</p><p><strong>Significance: </strong>PARAFAC under a properly examined chemical rank can be easily adapted for retrieval the underlying Beer-Lambert law of the original EEFM measurements with a low-rank trilinear structure through the chemically meaningful information either when (i) no deviation of Beer-Lambert law was observed as deeply discussed in connection with the dataset acquired from vomitoxin-driven molecular sensing through TMA-capped AIS QDs, or when (ii) substantial deviations of the Beer-Lambert law are evident, as discussed in connection with the dataset collected from sensing ionic species through Pb(II) bridging of GSH-capped CdTe QDs.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PARAFAC under non-negativity constraint is adapted to recover the underlying Beer-Lambert law of the excitation-emission fluorescence matrix measurements acquired from analyte-triggered semiconductor QDs photoluminescence modulation. When and why?\",\"authors\":\"Sarmento J Mazivila, Jose X Soares, Rui A S Lapa, M Lúcia M F S Saraiva, Jose O Fernandes, Sara C Cunha, Joao L M Santos\",\"doi\":\"10.1016/j.talanta.2024.126896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Analyte-triggered semiconductor quantum dots (QDs) modulation in the presence of non-consistently responsive fluorescent species represents a challenging analytical issue in concrete multi-way data handling. QDs with heterogeneous sizes and/or uneven distribution of functional moieties on their surfaces exhibit significant fluctuations in the fluorescent response components, known as chemical rank, across different excitation/emission modes. This phenomenon may lead to a substantial deviation from the proportionality prescribed by Beer-Lambert law. Nonetheless, even in the presence of such deviation, a multi-way model may be successfully selected after determining a proper chemical rank in a QDs system.</p><p><strong>Results: </strong>We show that in a valid PARAllel FACtor (PARAFAC) model under properly determined chemical rank, meaningfully resolved pure spectral profiles can be reached for each fluorescent responsive constituent in the original excitation-emission fluorescence matrix (EEFM) measurements. This was thoroughly illustrated by applying PARAFAC trilinear decomposition of a three-way data array of two distinct datasets acquired from semiconductor QDs sensing systems with low-rank trilinear assumption. The first dataset, presented here for the first time, comprises EEFM measurements of the ligand-driven quenching of thiomalic acid (TMA)-capped AgInS<sub>2</sub> (AIS) QDs by vomitoxin. The second dataset, employed for illustrative purposes, comprises EEFM measurements of the quenching, via cation bridging, of glutathione (GSH)-capped CdTe QDs by Pb(II). The results of this study enabled the determination of vomitoxin at a ppb level in real samples of fish feeds, showcasing the efficacy of the PARAFAC model in resolving spectral signatures (loadings) and pure concentration profiles (scores).</p><p><strong>Significance: </strong>PARAFAC under a properly examined chemical rank can be easily adapted for retrieval the underlying Beer-Lambert law of the original EEFM measurements with a low-rank trilinear structure through the chemically meaningful information either when (i) no deviation of Beer-Lambert law was observed as deeply discussed in connection with the dataset acquired from vomitoxin-driven molecular sensing through TMA-capped AIS QDs, or when (ii) substantial deviations of the Beer-Lambert law are evident, as discussed in connection with the dataset collected from sensing ionic species through Pb(II) bridging of GSH-capped CdTe QDs.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.126896\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126896","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
PARAFAC under non-negativity constraint is adapted to recover the underlying Beer-Lambert law of the excitation-emission fluorescence matrix measurements acquired from analyte-triggered semiconductor QDs photoluminescence modulation. When and why?
Background: Analyte-triggered semiconductor quantum dots (QDs) modulation in the presence of non-consistently responsive fluorescent species represents a challenging analytical issue in concrete multi-way data handling. QDs with heterogeneous sizes and/or uneven distribution of functional moieties on their surfaces exhibit significant fluctuations in the fluorescent response components, known as chemical rank, across different excitation/emission modes. This phenomenon may lead to a substantial deviation from the proportionality prescribed by Beer-Lambert law. Nonetheless, even in the presence of such deviation, a multi-way model may be successfully selected after determining a proper chemical rank in a QDs system.
Results: We show that in a valid PARAllel FACtor (PARAFAC) model under properly determined chemical rank, meaningfully resolved pure spectral profiles can be reached for each fluorescent responsive constituent in the original excitation-emission fluorescence matrix (EEFM) measurements. This was thoroughly illustrated by applying PARAFAC trilinear decomposition of a three-way data array of two distinct datasets acquired from semiconductor QDs sensing systems with low-rank trilinear assumption. The first dataset, presented here for the first time, comprises EEFM measurements of the ligand-driven quenching of thiomalic acid (TMA)-capped AgInS2 (AIS) QDs by vomitoxin. The second dataset, employed for illustrative purposes, comprises EEFM measurements of the quenching, via cation bridging, of glutathione (GSH)-capped CdTe QDs by Pb(II). The results of this study enabled the determination of vomitoxin at a ppb level in real samples of fish feeds, showcasing the efficacy of the PARAFAC model in resolving spectral signatures (loadings) and pure concentration profiles (scores).
Significance: PARAFAC under a properly examined chemical rank can be easily adapted for retrieval the underlying Beer-Lambert law of the original EEFM measurements with a low-rank trilinear structure through the chemically meaningful information either when (i) no deviation of Beer-Lambert law was observed as deeply discussed in connection with the dataset acquired from vomitoxin-driven molecular sensing through TMA-capped AIS QDs, or when (ii) substantial deviations of the Beer-Lambert law are evident, as discussed in connection with the dataset collected from sensing ionic species through Pb(II) bridging of GSH-capped CdTe QDs.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.