Alma Karen Lomeli-Lepe, José Luis Castañeda-Cabral, Mónica E Ureña-Guerrero, Graciela Gudiño Cabrera, Silvia Josefina López-Pérez
{"title":"蜂毒能减轻与脂多糖诱导的黑质下-纹状体轴α-突触核蛋白相关的早期炎症和氧化应激反应","authors":"Alma Karen Lomeli-Lepe, José Luis Castañeda-Cabral, Mónica E Ureña-Guerrero, Graciela Gudiño Cabrera, Silvia Josefina López-Pérez","doi":"10.1007/s12013-024-01552-x","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation and oxidative stress are important features in the pathogenesis and development of synucleinopathies, the glial activation and upregulation of pro-inflammatory and oxidative mediators induce alpha-synuclein (α-syn) accumulation. Recent studies have shown that bee venom (BV) has beneficial effects on symptoms of these neurodegenerative diseases. BV is known to exert anti-inflammatory and anti-oxidative effects. Here, we investigated the effects of BV over the different inflammatory and oxidative markers, and in the expression of α-syn and tyrosine hydroxylase (TH) in a lipopolysaccharide (LPS)-induced rat model of synucleinopathies. We examined whether BV (1.5 mg/kg by acupoint injection ST36 six times every 48 h) could change the α-syn and TH expression measured by western blotting, also, observed the activation of microglia and astrocytes by immunofluorescence, quantified the proinflammatory cytokines levels of tumoral necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β) by enzyme-linked immunosorbent assay (ELISA), and estimated the lipid peroxidation and the activity of superoxide dismutase (SOD) and catalase (CAT) by colorimetric kits in LPS-treated rats (2.5 µg by a single dose intranigral injection) in substantia nigra (SN) and striatum (STR) brain areas. In the LPS-injected rat brain, BV treatment reduced α-syn levels and increased the TH levels. In addition, we observed lower microglia and astrocyte activation in SN and STR. Furthermore, BV decreases IL-1β and lipid peroxidation and increases the CAT activity in the STR. These results indicate that BV can restore the α-syn and TH levels possibly by the inhibition of LPS-induced neuroinflammation and oxidation, also, these results suggest that BV could be a promising treatment option for synucleinopathies.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bee Venom Reduces Early Inflammation and Oxidative Stress Associated with Lipopolysaccharide-induced Alpha-synuclein in the Substantia Nigra-striatum Axis.\",\"authors\":\"Alma Karen Lomeli-Lepe, José Luis Castañeda-Cabral, Mónica E Ureña-Guerrero, Graciela Gudiño Cabrera, Silvia Josefina López-Pérez\",\"doi\":\"10.1007/s12013-024-01552-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroinflammation and oxidative stress are important features in the pathogenesis and development of synucleinopathies, the glial activation and upregulation of pro-inflammatory and oxidative mediators induce alpha-synuclein (α-syn) accumulation. Recent studies have shown that bee venom (BV) has beneficial effects on symptoms of these neurodegenerative diseases. BV is known to exert anti-inflammatory and anti-oxidative effects. Here, we investigated the effects of BV over the different inflammatory and oxidative markers, and in the expression of α-syn and tyrosine hydroxylase (TH) in a lipopolysaccharide (LPS)-induced rat model of synucleinopathies. We examined whether BV (1.5 mg/kg by acupoint injection ST36 six times every 48 h) could change the α-syn and TH expression measured by western blotting, also, observed the activation of microglia and astrocytes by immunofluorescence, quantified the proinflammatory cytokines levels of tumoral necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β) by enzyme-linked immunosorbent assay (ELISA), and estimated the lipid peroxidation and the activity of superoxide dismutase (SOD) and catalase (CAT) by colorimetric kits in LPS-treated rats (2.5 µg by a single dose intranigral injection) in substantia nigra (SN) and striatum (STR) brain areas. In the LPS-injected rat brain, BV treatment reduced α-syn levels and increased the TH levels. In addition, we observed lower microglia and astrocyte activation in SN and STR. Furthermore, BV decreases IL-1β and lipid peroxidation and increases the CAT activity in the STR. These results indicate that BV can restore the α-syn and TH levels possibly by the inhibition of LPS-induced neuroinflammation and oxidation, also, these results suggest that BV could be a promising treatment option for synucleinopathies.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01552-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01552-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bee Venom Reduces Early Inflammation and Oxidative Stress Associated with Lipopolysaccharide-induced Alpha-synuclein in the Substantia Nigra-striatum Axis.
Neuroinflammation and oxidative stress are important features in the pathogenesis and development of synucleinopathies, the glial activation and upregulation of pro-inflammatory and oxidative mediators induce alpha-synuclein (α-syn) accumulation. Recent studies have shown that bee venom (BV) has beneficial effects on symptoms of these neurodegenerative diseases. BV is known to exert anti-inflammatory and anti-oxidative effects. Here, we investigated the effects of BV over the different inflammatory and oxidative markers, and in the expression of α-syn and tyrosine hydroxylase (TH) in a lipopolysaccharide (LPS)-induced rat model of synucleinopathies. We examined whether BV (1.5 mg/kg by acupoint injection ST36 six times every 48 h) could change the α-syn and TH expression measured by western blotting, also, observed the activation of microglia and astrocytes by immunofluorescence, quantified the proinflammatory cytokines levels of tumoral necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β) by enzyme-linked immunosorbent assay (ELISA), and estimated the lipid peroxidation and the activity of superoxide dismutase (SOD) and catalase (CAT) by colorimetric kits in LPS-treated rats (2.5 µg by a single dose intranigral injection) in substantia nigra (SN) and striatum (STR) brain areas. In the LPS-injected rat brain, BV treatment reduced α-syn levels and increased the TH levels. In addition, we observed lower microglia and astrocyte activation in SN and STR. Furthermore, BV decreases IL-1β and lipid peroxidation and increases the CAT activity in the STR. These results indicate that BV can restore the α-syn and TH levels possibly by the inhibition of LPS-induced neuroinflammation and oxidation, also, these results suggest that BV could be a promising treatment option for synucleinopathies.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.