{"title":"亚麻籽油对地亚西农诱导的雄性大鼠肾损伤的新型肾保护活性","authors":"Narges Farokhi, Akram Ranjbar, Fereshteh Mehri, Mahdi Ramezani","doi":"10.1007/s12013-024-01514-3","DOIUrl":null,"url":null,"abstract":"<p><p>In male rats, the flaxseed oil (FS-oil) modulatory properties were investigated on diazinon (DZN)-induced nephrotoxicity. Adult male Wistar rats were divided randomly into five groups. To induce nephrotoxicity, animals received DZN (70 mg/kg/day, p.o.). Also, treatment groups received FS-oil (100 and 200 mg/kg/day, p.o.). The animal treatment was 28 consecutive days. On the 29th day, serum and kidney tissue samples were removed and serum levels of the creatinine, blood urea nitrogen (BUN), malondialdehyde (MDA), glutathione peroxidase (GPx), and catalase (CAT), were measured. Also, hematoxylin and eosin (H&E) staining was applied for histological studies. DZN significantly increased the BUN, creatinine, and MDA levels compared to the control group. Besides, DZN significantly decreased the GPx and CAT activity in the kidney tissue. However, the modulatory effects of FS-oil were observed by improving renal enzyme factors, inhibiting oxidative stress, and histological change. This study demonstrated that FS-oil ameliorated DZN-induced nephrotoxicity and can be used as a preventive agent against DZN toxicity because of the FS-oil antioxidant characteristics.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Novel Nephroprotective Activity of Flaxseed Oil on Diazinon-induced Kidney Damage in Male Rats.\",\"authors\":\"Narges Farokhi, Akram Ranjbar, Fereshteh Mehri, Mahdi Ramezani\",\"doi\":\"10.1007/s12013-024-01514-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In male rats, the flaxseed oil (FS-oil) modulatory properties were investigated on diazinon (DZN)-induced nephrotoxicity. Adult male Wistar rats were divided randomly into five groups. To induce nephrotoxicity, animals received DZN (70 mg/kg/day, p.o.). Also, treatment groups received FS-oil (100 and 200 mg/kg/day, p.o.). The animal treatment was 28 consecutive days. On the 29th day, serum and kidney tissue samples were removed and serum levels of the creatinine, blood urea nitrogen (BUN), malondialdehyde (MDA), glutathione peroxidase (GPx), and catalase (CAT), were measured. Also, hematoxylin and eosin (H&E) staining was applied for histological studies. DZN significantly increased the BUN, creatinine, and MDA levels compared to the control group. Besides, DZN significantly decreased the GPx and CAT activity in the kidney tissue. However, the modulatory effects of FS-oil were observed by improving renal enzyme factors, inhibiting oxidative stress, and histological change. This study demonstrated that FS-oil ameliorated DZN-induced nephrotoxicity and can be used as a preventive agent against DZN toxicity because of the FS-oil antioxidant characteristics.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01514-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01514-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Novel Nephroprotective Activity of Flaxseed Oil on Diazinon-induced Kidney Damage in Male Rats.
In male rats, the flaxseed oil (FS-oil) modulatory properties were investigated on diazinon (DZN)-induced nephrotoxicity. Adult male Wistar rats were divided randomly into five groups. To induce nephrotoxicity, animals received DZN (70 mg/kg/day, p.o.). Also, treatment groups received FS-oil (100 and 200 mg/kg/day, p.o.). The animal treatment was 28 consecutive days. On the 29th day, serum and kidney tissue samples were removed and serum levels of the creatinine, blood urea nitrogen (BUN), malondialdehyde (MDA), glutathione peroxidase (GPx), and catalase (CAT), were measured. Also, hematoxylin and eosin (H&E) staining was applied for histological studies. DZN significantly increased the BUN, creatinine, and MDA levels compared to the control group. Besides, DZN significantly decreased the GPx and CAT activity in the kidney tissue. However, the modulatory effects of FS-oil were observed by improving renal enzyme factors, inhibiting oxidative stress, and histological change. This study demonstrated that FS-oil ameliorated DZN-induced nephrotoxicity and can be used as a preventive agent against DZN toxicity because of the FS-oil antioxidant characteristics.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.