P M Vetriselvi, Manoj Kumar Narasimhan, Marcus Samuel, Rex Arunraj
{"title":"利用重组α-半乳糖苷酶过表达全细胞大肠杆菌对甘蔗渣生物质进行生物降解:一种可持续的农业废物利用方法。","authors":"P M Vetriselvi, Manoj Kumar Narasimhan, Marcus Samuel, Rex Arunraj","doi":"10.1007/s13205-024-04092-6","DOIUrl":null,"url":null,"abstract":"<p><p>Whole-cell bacteria overexpressing a combo of enzymes capable of breaking down complex lignocellulosic components of cell wall is a path-breaking innovation that is eco-friendly for agricultural waste processing and sustainable environment. In this study, a whole-cell <i>E. coli</i> overexpressing the enzyme alpha-galactosidase is used to biodegrade sugarcane bagasse, presenting a sustainable approach for agricultural waste utilization. Alpha-galactosidase is an enzyme that breaks down alpha-D-galactose residues at the non-reducing ends of oligosaccharides (such as raffinose, stachyose, and verbascose), complex galactomannans, and galactolipids. Submerged and solid-state fermentation-mediated hydrolysis of bagasse waste using recombinant <i>E. coli</i> overexpressing α-galactosidase shows a decrease in the level of α-galactosides releasing sucrose and reducing sugars, indicating a continuous breakdown of the cell wall. Scanning electron microscopy indicates substantial disintegration of cell wall fibers under both submerged (12 h) and solid-state (7 days) fermentation, confirming the disruption of bagasse cell wall structural integrity. The 2XM9 media was found competent for both total protein and enzyme activity; the total protein concentration was 2553 µg/ml after 28 h of induction with an enzyme activity of 0.445 gal units/µg of protein after 16 h of induction at 24 °C. The results show that using whole-cell recombinant systems that express different cell wall-degrading enzymes could be a sustainable way to use agricultural waste, which would help with both waste management and protecting the environment.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 10","pages":"246"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424598/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biodegradation of sugarcane bagasse biomass using recombinant alpha-galactosidase overexpressing whole-cell <i>E.coli</i>: a sustainable method of agricultural waste utilization.\",\"authors\":\"P M Vetriselvi, Manoj Kumar Narasimhan, Marcus Samuel, Rex Arunraj\",\"doi\":\"10.1007/s13205-024-04092-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Whole-cell bacteria overexpressing a combo of enzymes capable of breaking down complex lignocellulosic components of cell wall is a path-breaking innovation that is eco-friendly for agricultural waste processing and sustainable environment. In this study, a whole-cell <i>E. coli</i> overexpressing the enzyme alpha-galactosidase is used to biodegrade sugarcane bagasse, presenting a sustainable approach for agricultural waste utilization. Alpha-galactosidase is an enzyme that breaks down alpha-D-galactose residues at the non-reducing ends of oligosaccharides (such as raffinose, stachyose, and verbascose), complex galactomannans, and galactolipids. Submerged and solid-state fermentation-mediated hydrolysis of bagasse waste using recombinant <i>E. coli</i> overexpressing α-galactosidase shows a decrease in the level of α-galactosides releasing sucrose and reducing sugars, indicating a continuous breakdown of the cell wall. Scanning electron microscopy indicates substantial disintegration of cell wall fibers under both submerged (12 h) and solid-state (7 days) fermentation, confirming the disruption of bagasse cell wall structural integrity. The 2XM9 media was found competent for both total protein and enzyme activity; the total protein concentration was 2553 µg/ml after 28 h of induction with an enzyme activity of 0.445 gal units/µg of protein after 16 h of induction at 24 °C. The results show that using whole-cell recombinant systems that express different cell wall-degrading enzymes could be a sustainable way to use agricultural waste, which would help with both waste management and protecting the environment.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"14 10\",\"pages\":\"246\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424598/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04092-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04092-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
过量表达能分解细胞壁中复杂木质纤维素成分的组合酶的全细胞细菌是一种突破性创新,对农业废物处理和可持续环境具有生态友好性。本研究利用过量表达α-半乳糖苷酶的全细胞大肠杆菌对甘蔗渣进行生物降解,为农业废物利用提供了一种可持续的方法。α-半乳糖苷酶是一种能分解低聚糖(如棉子糖、水苏糖和马来糖)非还原末端的α-D-半乳糖残基、复合半乳甘露聚糖和半乳脂的酶。利用过量表达 α-半乳糖苷酶的重组大肠杆菌对甘蔗渣废料进行浸没式和固态发酵介导的水解显示,释放出蔗糖和还原糖的α-半乳糖苷水平下降,表明细胞壁在不断分解。扫描电子显微镜显示,在浸没发酵(12 小时)和固态发酵(7 天)过程中,细胞壁纤维都发生了大量分解,证实蔗渣细胞壁结构的完整性受到破坏。在 2XM9 培养基中,总蛋白和酶活性均合格;在 24 °C 下诱导 28 小时后,总蛋白浓度为 2553 微克/毫升,诱导 16 小时后,酶活性为 0.445 gal 单位/微克蛋白。研究结果表明,使用表达不同细胞壁降解酶的全细胞重组系统是一种可持续利用农业废弃物的方法,有助于废弃物管理和环境保护。
Biodegradation of sugarcane bagasse biomass using recombinant alpha-galactosidase overexpressing whole-cell E.coli: a sustainable method of agricultural waste utilization.
Whole-cell bacteria overexpressing a combo of enzymes capable of breaking down complex lignocellulosic components of cell wall is a path-breaking innovation that is eco-friendly for agricultural waste processing and sustainable environment. In this study, a whole-cell E. coli overexpressing the enzyme alpha-galactosidase is used to biodegrade sugarcane bagasse, presenting a sustainable approach for agricultural waste utilization. Alpha-galactosidase is an enzyme that breaks down alpha-D-galactose residues at the non-reducing ends of oligosaccharides (such as raffinose, stachyose, and verbascose), complex galactomannans, and galactolipids. Submerged and solid-state fermentation-mediated hydrolysis of bagasse waste using recombinant E. coli overexpressing α-galactosidase shows a decrease in the level of α-galactosides releasing sucrose and reducing sugars, indicating a continuous breakdown of the cell wall. Scanning electron microscopy indicates substantial disintegration of cell wall fibers under both submerged (12 h) and solid-state (7 days) fermentation, confirming the disruption of bagasse cell wall structural integrity. The 2XM9 media was found competent for both total protein and enzyme activity; the total protein concentration was 2553 µg/ml after 28 h of induction with an enzyme activity of 0.445 gal units/µg of protein after 16 h of induction at 24 °C. The results show that using whole-cell recombinant systems that express different cell wall-degrading enzymes could be a sustainable way to use agricultural waste, which would help with both waste management and protecting the environment.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.