{"title":"单核细胞与淋巴细胞比率与 AngioPLUS 显示的颈动脉斑块内新生血管有关。","authors":"Mingfeng Zhai, Xiao Sun, Jian Wang, Jimei Xu, Fuqin Bian, Menglin Wu, Yafei Yang, Hongwei Chen, Jinghong Lu","doi":"10.1002/brb3.70058","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>The monocyte–lymphocyte ratio (MLR) is a hematological test parameter that reflects the status of both monocytes and lymphocytes as inflammatory cells. This study aims to investigate the relationship between MLR and carotid intraplaque neovascularization (IPN) in patients with asymptomatic carotid stenosis.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We performed the Angio Planewave Ultrasensitive (AngioPLUS) screening for patients with carotid plaques. The carotid plaque stability was evaluated by semiquantitative visual grading of carotid IPN. Binary logistic regression models were performed to determine the associations between different clinical and laboratory indicators and the presence of high IPN.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>A total of 160 patients were eventually enrolled with 99 in the low IPN group (Scores 0–1) and 61 in the high IPN group (Score 2). Univariate logistic regression showed that age, monocytes, lymphocytes, glycated hemoglobin (HbA1c), fibrinogen, <span>d</span>-dimmer, and MLR were significantly associated with the presence of high IPN (all <i>p</i> < 0.05). Multivariate logistic regression models showed that MLR was significantly associated with the presence of high IPN after adjusting for other covariates. An MLR value of 32.9 was the optimal cutoff value to differentiate high and low IPN. High MLR was also significantly correlated with the presence of high IPN (odds ratio [OR] = 4.08, 95% confidence interval [CI]: 1.69–9.88, <i>p</i> = 0.002) when included in the above multivariate logistic regression model.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Elevated MLR is closely associated with the presence of high IPN and may serve as a surrogate biomarker for carotid IPN.</p>\n </section>\n </div>","PeriodicalId":9081,"journal":{"name":"Brain and Behavior","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70058","citationCount":"0","resultStr":"{\"title\":\"The Monocyte-to-Lymphocyte Ratio Was Associated With Intraplaque Neovascularization of the Carotid Artery on AngioPLUS\",\"authors\":\"Mingfeng Zhai, Xiao Sun, Jian Wang, Jimei Xu, Fuqin Bian, Menglin Wu, Yafei Yang, Hongwei Chen, Jinghong Lu\",\"doi\":\"10.1002/brb3.70058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>The monocyte–lymphocyte ratio (MLR) is a hematological test parameter that reflects the status of both monocytes and lymphocytes as inflammatory cells. This study aims to investigate the relationship between MLR and carotid intraplaque neovascularization (IPN) in patients with asymptomatic carotid stenosis.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We performed the Angio Planewave Ultrasensitive (AngioPLUS) screening for patients with carotid plaques. The carotid plaque stability was evaluated by semiquantitative visual grading of carotid IPN. Binary logistic regression models were performed to determine the associations between different clinical and laboratory indicators and the presence of high IPN.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>A total of 160 patients were eventually enrolled with 99 in the low IPN group (Scores 0–1) and 61 in the high IPN group (Score 2). Univariate logistic regression showed that age, monocytes, lymphocytes, glycated hemoglobin (HbA1c), fibrinogen, <span>d</span>-dimmer, and MLR were significantly associated with the presence of high IPN (all <i>p</i> < 0.05). Multivariate logistic regression models showed that MLR was significantly associated with the presence of high IPN after adjusting for other covariates. An MLR value of 32.9 was the optimal cutoff value to differentiate high and low IPN. High MLR was also significantly correlated with the presence of high IPN (odds ratio [OR] = 4.08, 95% confidence interval [CI]: 1.69–9.88, <i>p</i> = 0.002) when included in the above multivariate logistic regression model.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Elevated MLR is closely associated with the presence of high IPN and may serve as a surrogate biomarker for carotid IPN.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9081,\"journal\":{\"name\":\"Brain and Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70058\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70058\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70058","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
The Monocyte-to-Lymphocyte Ratio Was Associated With Intraplaque Neovascularization of the Carotid Artery on AngioPLUS
Background
The monocyte–lymphocyte ratio (MLR) is a hematological test parameter that reflects the status of both monocytes and lymphocytes as inflammatory cells. This study aims to investigate the relationship between MLR and carotid intraplaque neovascularization (IPN) in patients with asymptomatic carotid stenosis.
Methods
We performed the Angio Planewave Ultrasensitive (AngioPLUS) screening for patients with carotid plaques. The carotid plaque stability was evaluated by semiquantitative visual grading of carotid IPN. Binary logistic regression models were performed to determine the associations between different clinical and laboratory indicators and the presence of high IPN.
Results
A total of 160 patients were eventually enrolled with 99 in the low IPN group (Scores 0–1) and 61 in the high IPN group (Score 2). Univariate logistic regression showed that age, monocytes, lymphocytes, glycated hemoglobin (HbA1c), fibrinogen, d-dimmer, and MLR were significantly associated with the presence of high IPN (all p < 0.05). Multivariate logistic regression models showed that MLR was significantly associated with the presence of high IPN after adjusting for other covariates. An MLR value of 32.9 was the optimal cutoff value to differentiate high and low IPN. High MLR was also significantly correlated with the presence of high IPN (odds ratio [OR] = 4.08, 95% confidence interval [CI]: 1.69–9.88, p = 0.002) when included in the above multivariate logistic regression model.
Conclusion
Elevated MLR is closely associated with the presence of high IPN and may serve as a surrogate biomarker for carotid IPN.
期刊介绍:
Brain and Behavior is supported by other journals published by Wiley, including a number of society-owned journals. The journals listed below support Brain and Behavior and participate in the Manuscript Transfer Program by referring articles of suitable quality and offering authors the option to have their paper, with any peer review reports, automatically transferred to Brain and Behavior.
* [Acta Psychiatrica Scandinavica](https://publons.com/journal/1366/acta-psychiatrica-scandinavica)
* [Addiction Biology](https://publons.com/journal/1523/addiction-biology)
* [Aggressive Behavior](https://publons.com/journal/3611/aggressive-behavior)
* [Brain Pathology](https://publons.com/journal/1787/brain-pathology)
* [Child: Care, Health and Development](https://publons.com/journal/6111/child-care-health-and-development)
* [Criminal Behaviour and Mental Health](https://publons.com/journal/3839/criminal-behaviour-and-mental-health)
* [Depression and Anxiety](https://publons.com/journal/1528/depression-and-anxiety)
* Developmental Neurobiology
* [Developmental Science](https://publons.com/journal/1069/developmental-science)
* [European Journal of Neuroscience](https://publons.com/journal/1441/european-journal-of-neuroscience)
* [Genes, Brain and Behavior](https://publons.com/journal/1635/genes-brain-and-behavior)
* [GLIA](https://publons.com/journal/1287/glia)
* [Hippocampus](https://publons.com/journal/1056/hippocampus)
* [Human Brain Mapping](https://publons.com/journal/500/human-brain-mapping)
* [Journal for the Theory of Social Behaviour](https://publons.com/journal/7330/journal-for-the-theory-of-social-behaviour)
* [Journal of Comparative Neurology](https://publons.com/journal/1306/journal-of-comparative-neurology)
* [Journal of Neuroimaging](https://publons.com/journal/6379/journal-of-neuroimaging)
* [Journal of Neuroscience Research](https://publons.com/journal/2778/journal-of-neuroscience-research)
* [Journal of Organizational Behavior](https://publons.com/journal/1123/journal-of-organizational-behavior)
* [Journal of the Peripheral Nervous System](https://publons.com/journal/3929/journal-of-the-peripheral-nervous-system)
* [Muscle & Nerve](https://publons.com/journal/4448/muscle-and-nerve)
* [Neural Pathology and Applied Neurobiology](https://publons.com/journal/2401/neuropathology-and-applied-neurobiology)