Peiling Zeng, Baoru Zhao, Ming Li, Yajun Wang, Guiyan Cai, Ruilin Chen, Lidian Chen, Jiao Liu
{"title":"杏仁核亚区的体积和外周程序性细胞死亡蛋白-1的水平与膝骨关节炎患者的认知能力下降有关。","authors":"Peiling Zeng, Baoru Zhao, Ming Li, Yajun Wang, Guiyan Cai, Ruilin Chen, Lidian Chen, Jiao Liu","doi":"10.1002/brb3.70042","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Persistent pain is a prominent symptom of knee osteoarthritis (KOA) and has been associated with cognitive decline in individuals with KOA. The amygdala, a complex structure consisting of nine subnuclei, and programmed cell death protein-1 (PD-1) levels play crucial roles in pain regulation and cognitive processing. This study aims to investigate the relationships among amygdala subregion volumes, cognitive function, and PD-1 levels to elucidate the underlying mechanism of cognitive decline in KOA.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In this cross-sectional study, we recruited 36 patients with KOA and 25 age/gender-matched healthy controls for neuropsychological tests, structural magnetic resonance imaging scanning, and measurement of serum PD-1 levels. We used the atlas provided by FreeSurfer software to automatically segment the amygdala subnuclei. Subsequently, we compared the volumes of amygdala subregions between groups and explored their correlation with clinical scores and PD-1 levels.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Compared to healthy controls, individuals with KOA exhibited significantly lower scores on global cognition tasks, such as long-delay free recall, short-delay free recall, and immediate recall tasks. Moreover, they displayed decreased volumes in lateral nucleus basal nucleus paralaminar nucleus while showing increased volumes in accessory basal nucleus, central nucleus, medial nucleus, and cortical nucleus. Within the KOA group specifically, paralaminar volume was negatively correlated with immediate recall scores; pain scores were negatively correlated with global cognition; basal volume was negatively correlated with PD-1 levels.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Our findings highlight those alterations in amygdala subregion volumes along with changes in serum PD-1 levels may contribute to observe cognitive decline among individuals suffering from KOA.</p>\n </section>\n </div>","PeriodicalId":9081,"journal":{"name":"Brain and Behavior","volume":"14 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70042","citationCount":"0","resultStr":"{\"title\":\"The volumes of amygdala subregions and peripheral programmed cell death protein-1 levels are associated with cognitive decline in individuals with knee osteoarthritis\",\"authors\":\"Peiling Zeng, Baoru Zhao, Ming Li, Yajun Wang, Guiyan Cai, Ruilin Chen, Lidian Chen, Jiao Liu\",\"doi\":\"10.1002/brb3.70042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Persistent pain is a prominent symptom of knee osteoarthritis (KOA) and has been associated with cognitive decline in individuals with KOA. The amygdala, a complex structure consisting of nine subnuclei, and programmed cell death protein-1 (PD-1) levels play crucial roles in pain regulation and cognitive processing. This study aims to investigate the relationships among amygdala subregion volumes, cognitive function, and PD-1 levels to elucidate the underlying mechanism of cognitive decline in KOA.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>In this cross-sectional study, we recruited 36 patients with KOA and 25 age/gender-matched healthy controls for neuropsychological tests, structural magnetic resonance imaging scanning, and measurement of serum PD-1 levels. We used the atlas provided by FreeSurfer software to automatically segment the amygdala subnuclei. Subsequently, we compared the volumes of amygdala subregions between groups and explored their correlation with clinical scores and PD-1 levels.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Compared to healthy controls, individuals with KOA exhibited significantly lower scores on global cognition tasks, such as long-delay free recall, short-delay free recall, and immediate recall tasks. Moreover, they displayed decreased volumes in lateral nucleus basal nucleus paralaminar nucleus while showing increased volumes in accessory basal nucleus, central nucleus, medial nucleus, and cortical nucleus. Within the KOA group specifically, paralaminar volume was negatively correlated with immediate recall scores; pain scores were negatively correlated with global cognition; basal volume was negatively correlated with PD-1 levels.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Our findings highlight those alterations in amygdala subregion volumes along with changes in serum PD-1 levels may contribute to observe cognitive decline among individuals suffering from KOA.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9081,\"journal\":{\"name\":\"Brain and Behavior\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70042\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70042\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70042","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
The volumes of amygdala subregions and peripheral programmed cell death protein-1 levels are associated with cognitive decline in individuals with knee osteoarthritis
Background
Persistent pain is a prominent symptom of knee osteoarthritis (KOA) and has been associated with cognitive decline in individuals with KOA. The amygdala, a complex structure consisting of nine subnuclei, and programmed cell death protein-1 (PD-1) levels play crucial roles in pain regulation and cognitive processing. This study aims to investigate the relationships among amygdala subregion volumes, cognitive function, and PD-1 levels to elucidate the underlying mechanism of cognitive decline in KOA.
Methods
In this cross-sectional study, we recruited 36 patients with KOA and 25 age/gender-matched healthy controls for neuropsychological tests, structural magnetic resonance imaging scanning, and measurement of serum PD-1 levels. We used the atlas provided by FreeSurfer software to automatically segment the amygdala subnuclei. Subsequently, we compared the volumes of amygdala subregions between groups and explored their correlation with clinical scores and PD-1 levels.
Results
Compared to healthy controls, individuals with KOA exhibited significantly lower scores on global cognition tasks, such as long-delay free recall, short-delay free recall, and immediate recall tasks. Moreover, they displayed decreased volumes in lateral nucleus basal nucleus paralaminar nucleus while showing increased volumes in accessory basal nucleus, central nucleus, medial nucleus, and cortical nucleus. Within the KOA group specifically, paralaminar volume was negatively correlated with immediate recall scores; pain scores were negatively correlated with global cognition; basal volume was negatively correlated with PD-1 levels.
Conclusion
Our findings highlight those alterations in amygdala subregion volumes along with changes in serum PD-1 levels may contribute to observe cognitive decline among individuals suffering from KOA.
期刊介绍:
Brain and Behavior is supported by other journals published by Wiley, including a number of society-owned journals. The journals listed below support Brain and Behavior and participate in the Manuscript Transfer Program by referring articles of suitable quality and offering authors the option to have their paper, with any peer review reports, automatically transferred to Brain and Behavior.
* [Acta Psychiatrica Scandinavica](https://publons.com/journal/1366/acta-psychiatrica-scandinavica)
* [Addiction Biology](https://publons.com/journal/1523/addiction-biology)
* [Aggressive Behavior](https://publons.com/journal/3611/aggressive-behavior)
* [Brain Pathology](https://publons.com/journal/1787/brain-pathology)
* [Child: Care, Health and Development](https://publons.com/journal/6111/child-care-health-and-development)
* [Criminal Behaviour and Mental Health](https://publons.com/journal/3839/criminal-behaviour-and-mental-health)
* [Depression and Anxiety](https://publons.com/journal/1528/depression-and-anxiety)
* Developmental Neurobiology
* [Developmental Science](https://publons.com/journal/1069/developmental-science)
* [European Journal of Neuroscience](https://publons.com/journal/1441/european-journal-of-neuroscience)
* [Genes, Brain and Behavior](https://publons.com/journal/1635/genes-brain-and-behavior)
* [GLIA](https://publons.com/journal/1287/glia)
* [Hippocampus](https://publons.com/journal/1056/hippocampus)
* [Human Brain Mapping](https://publons.com/journal/500/human-brain-mapping)
* [Journal for the Theory of Social Behaviour](https://publons.com/journal/7330/journal-for-the-theory-of-social-behaviour)
* [Journal of Comparative Neurology](https://publons.com/journal/1306/journal-of-comparative-neurology)
* [Journal of Neuroimaging](https://publons.com/journal/6379/journal-of-neuroimaging)
* [Journal of Neuroscience Research](https://publons.com/journal/2778/journal-of-neuroscience-research)
* [Journal of Organizational Behavior](https://publons.com/journal/1123/journal-of-organizational-behavior)
* [Journal of the Peripheral Nervous System](https://publons.com/journal/3929/journal-of-the-peripheral-nervous-system)
* [Muscle & Nerve](https://publons.com/journal/4448/muscle-and-nerve)
* [Neural Pathology and Applied Neurobiology](https://publons.com/journal/2401/neuropathology-and-applied-neurobiology)