Yike Shen, Arce Domingo-Relloso, Allison Kupsco, Marianthi-Anna Kioumourtzoglou, Maria Tellez-Plaza, Jason G Umans, Amanda M Fretts, Ying Zhang, Peter F Schnatz, Ramon Casanova, Lisa Warsinger Martin, Steve Horvath, JoAnn E Manson, Shelley A Cole, Haotian Wu, Eric A Whitsel, Andrea A Baccarelli, Ana Navas-Acien, Feng Gao
{"title":"AESurv:用于准确早期预测冠心病的自动编码器生存分析。","authors":"Yike Shen, Arce Domingo-Relloso, Allison Kupsco, Marianthi-Anna Kioumourtzoglou, Maria Tellez-Plaza, Jason G Umans, Amanda M Fretts, Ying Zhang, Peter F Schnatz, Ramon Casanova, Lisa Warsinger Martin, Steve Horvath, JoAnn E Manson, Shelley A Cole, Haotian Wu, Eric A Whitsel, Andrea A Baccarelli, Ana Navas-Acien, Feng Gao","doi":"10.1093/bib/bbae479","DOIUrl":null,"url":null,"abstract":"<p><p>Coronary heart disease (CHD) is one of the leading causes of mortality and morbidity in the United States. Accurate time-to-event CHD prediction models with high-dimensional DNA methylation and clinical features may assist with early prediction and intervention strategies. We developed a state-of-the-art deep learning autoencoder survival analysis model (AESurv) to effectively analyze high-dimensional blood DNA methylation features and traditional clinical risk factors by learning low-dimensional representation of participants for time-to-event CHD prediction. We demonstrated the utility of our model in two cohort studies: the Strong Heart Study cohort (SHS), a prospective cohort studying cardiovascular disease and its risk factors among American Indians adults; the Women's Health Initiative (WHI), a prospective cohort study including randomized clinical trials and observational study to improve postmenopausal women's health with one of the main focuses on cardiovascular disease. Our AESurv model effectively learned participant representations in low-dimensional latent space and achieved better model performance (concordance index-C index of 0.864 ± 0.009 and time-to-event mean area under the receiver operating characteristic curve-AUROC of 0.905 ± 0.009) than other survival analysis models (Cox proportional hazard, Cox proportional hazard deep neural network survival analysis, random survival forest, and gradient boosting survival analysis models) in the SHS. We further validated the AESurv model in WHI and also achieved the best model performance. The AESurv model can be used for accurate CHD prediction and assist health care professionals and patients to perform early intervention strategies. We suggest using AESurv model for future time-to-event CHD prediction based on DNA methylation features.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424508/pdf/","citationCount":"0","resultStr":"{\"title\":\"AESurv: autoencoder survival analysis for accurate early prediction of coronary heart disease.\",\"authors\":\"Yike Shen, Arce Domingo-Relloso, Allison Kupsco, Marianthi-Anna Kioumourtzoglou, Maria Tellez-Plaza, Jason G Umans, Amanda M Fretts, Ying Zhang, Peter F Schnatz, Ramon Casanova, Lisa Warsinger Martin, Steve Horvath, JoAnn E Manson, Shelley A Cole, Haotian Wu, Eric A Whitsel, Andrea A Baccarelli, Ana Navas-Acien, Feng Gao\",\"doi\":\"10.1093/bib/bbae479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coronary heart disease (CHD) is one of the leading causes of mortality and morbidity in the United States. Accurate time-to-event CHD prediction models with high-dimensional DNA methylation and clinical features may assist with early prediction and intervention strategies. We developed a state-of-the-art deep learning autoencoder survival analysis model (AESurv) to effectively analyze high-dimensional blood DNA methylation features and traditional clinical risk factors by learning low-dimensional representation of participants for time-to-event CHD prediction. We demonstrated the utility of our model in two cohort studies: the Strong Heart Study cohort (SHS), a prospective cohort studying cardiovascular disease and its risk factors among American Indians adults; the Women's Health Initiative (WHI), a prospective cohort study including randomized clinical trials and observational study to improve postmenopausal women's health with one of the main focuses on cardiovascular disease. Our AESurv model effectively learned participant representations in low-dimensional latent space and achieved better model performance (concordance index-C index of 0.864 ± 0.009 and time-to-event mean area under the receiver operating characteristic curve-AUROC of 0.905 ± 0.009) than other survival analysis models (Cox proportional hazard, Cox proportional hazard deep neural network survival analysis, random survival forest, and gradient boosting survival analysis models) in the SHS. We further validated the AESurv model in WHI and also achieved the best model performance. The AESurv model can be used for accurate CHD prediction and assist health care professionals and patients to perform early intervention strategies. We suggest using AESurv model for future time-to-event CHD prediction based on DNA methylation features.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424508/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae479\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae479","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
AESurv: autoencoder survival analysis for accurate early prediction of coronary heart disease.
Coronary heart disease (CHD) is one of the leading causes of mortality and morbidity in the United States. Accurate time-to-event CHD prediction models with high-dimensional DNA methylation and clinical features may assist with early prediction and intervention strategies. We developed a state-of-the-art deep learning autoencoder survival analysis model (AESurv) to effectively analyze high-dimensional blood DNA methylation features and traditional clinical risk factors by learning low-dimensional representation of participants for time-to-event CHD prediction. We demonstrated the utility of our model in two cohort studies: the Strong Heart Study cohort (SHS), a prospective cohort studying cardiovascular disease and its risk factors among American Indians adults; the Women's Health Initiative (WHI), a prospective cohort study including randomized clinical trials and observational study to improve postmenopausal women's health with one of the main focuses on cardiovascular disease. Our AESurv model effectively learned participant representations in low-dimensional latent space and achieved better model performance (concordance index-C index of 0.864 ± 0.009 and time-to-event mean area under the receiver operating characteristic curve-AUROC of 0.905 ± 0.009) than other survival analysis models (Cox proportional hazard, Cox proportional hazard deep neural network survival analysis, random survival forest, and gradient boosting survival analysis models) in the SHS. We further validated the AESurv model in WHI and also achieved the best model performance. The AESurv model can be used for accurate CHD prediction and assist health care professionals and patients to perform early intervention strategies. We suggest using AESurv model for future time-to-event CHD prediction based on DNA methylation features.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.