蛋白质语言模型在无结构虚拟筛选中表现出色。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Briefings in bioinformatics Pub Date : 2024-09-23 DOI:10.1093/bib/bbae480
Hilbert Yuen In Lam, Jia Sheng Guan, Xing Er Ong, Robbe Pincket, Yuguang Mu
{"title":"蛋白质语言模型在无结构虚拟筛选中表现出色。","authors":"Hilbert Yuen In Lam, Jia Sheng Guan, Xing Er Ong, Robbe Pincket, Yuguang Mu","doi":"10.1093/bib/bbae480","DOIUrl":null,"url":null,"abstract":"<p><p>Hitherto virtual screening (VS) has been typically performed using a structure-based drug design paradigm. Such methods typically require the use of molecular docking on high-resolution three-dimensional structures of a target protein-a computationally-intensive and time-consuming exercise. This work demonstrates that by employing protein language models and molecular graphs as inputs to a novel graph-to-transformer cross-attention mechanism, a screening power comparable to state-of-the-art structure-based models can be achieved. The implications thereof include highly expedited VS due to the greatly reduced compute required to run this model, and the ability to perform early stages of computer-aided drug design in the complete absence of 3D protein structures.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427677/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein language models are performant in structure-free virtual screening.\",\"authors\":\"Hilbert Yuen In Lam, Jia Sheng Guan, Xing Er Ong, Robbe Pincket, Yuguang Mu\",\"doi\":\"10.1093/bib/bbae480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hitherto virtual screening (VS) has been typically performed using a structure-based drug design paradigm. Such methods typically require the use of molecular docking on high-resolution three-dimensional structures of a target protein-a computationally-intensive and time-consuming exercise. This work demonstrates that by employing protein language models and molecular graphs as inputs to a novel graph-to-transformer cross-attention mechanism, a screening power comparable to state-of-the-art structure-based models can be achieved. The implications thereof include highly expedited VS due to the greatly reduced compute required to run this model, and the ability to perform early stages of computer-aided drug design in the complete absence of 3D protein structures.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427677/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae480\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae480","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,虚拟筛选(VS)通常采用基于结构的药物设计模式。这种方法通常需要在目标蛋白质的高分辨率三维结构上进行分子对接--计算密集且耗时。这项研究表明,将蛋白质语言模型和分子图作为新型图-转换器交叉注意机制的输入,可以实现与最先进的基于结构的模型相媲美的筛选能力。由于运行该模型所需的计算量大大减少,因此可以大大加快 VS 的速度,并能在完全没有三维蛋白质结构的情况下进行早期阶段的计算机辅助药物设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protein language models are performant in structure-free virtual screening.

Hitherto virtual screening (VS) has been typically performed using a structure-based drug design paradigm. Such methods typically require the use of molecular docking on high-resolution three-dimensional structures of a target protein-a computationally-intensive and time-consuming exercise. This work demonstrates that by employing protein language models and molecular graphs as inputs to a novel graph-to-transformer cross-attention mechanism, a screening power comparable to state-of-the-art structure-based models can be achieved. The implications thereof include highly expedited VS due to the greatly reduced compute required to run this model, and the ability to perform early stages of computer-aided drug design in the complete absence of 3D protein structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
期刊最新文献
Atomistic simulations reveal impacts of missense mutations on the structure and function of SynGAP1. COFFEE: consensus single cell-type specific inference for gene regulatory networks. DrugDoctor: enhancing drug recommendation in cold-start scenario via visit-level representation learning and training. 3t-seq: automatic gene expression analysis of single-copy genes, transposable elements, and tRNAs from RNA-seq data. AESurv: autoencoder survival analysis for accurate early prediction of coronary heart disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1