Qing Li, Huixian Li, Ruiwen Zhu, William Chi Shing Cho, Xiaoqiang Yao, Fung Ping Leung, Gary Tse, Lai Kwok Leung, Wing Tak Wong
{"title":"TRPV2钙通道通过激活自噬作用促进乳腺癌的进展潜力","authors":"Qing Li, Huixian Li, Ruiwen Zhu, William Chi Shing Cho, Xiaoqiang Yao, Fung Ping Leung, Gary Tse, Lai Kwok Leung, Wing Tak Wong","doi":"10.1186/s12935-024-03506-y","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer, the most prevalent and aggressive tumor affecting women, requires identification of disease determinants to facilitate the development of effective therapeutic strategies. Transient receptor potential vanilloid 2 (TRPV2), an ion channel highly permeable for calcium (Ca<sup>2+</sup>), is implicated in physiological and pathological processes. Nevertheless, the role of TRPV2 in breast cancer remains poorly elucidated. In this study, we found high levels of TRPV2 expression associated with advanced malignancy, thereby suggesting its potential as a biomarker for breast cancer staging. We demonstrated that TRPV2 activation promotes breast cancer cell proliferation, migration, and invasion, while silencing of TRPV2 suppresses breast cancer progression, highlighting the oncogenic role of TRPV2. Moreover, we reveal that TRPV2 facilitates cancer progression by modulating the CaMKKβ/AMPK/ULK1-autophagic axis through mediating calcium influx, providing new insights into TRPV2 as a novel therapeutic target for breast cancer treatment.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"24 1","pages":"324"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438410/pdf/","citationCount":"0","resultStr":"{\"title\":\"TRPV2 calcium channel promotes breast cancer progression potential by activating autophagy.\",\"authors\":\"Qing Li, Huixian Li, Ruiwen Zhu, William Chi Shing Cho, Xiaoqiang Yao, Fung Ping Leung, Gary Tse, Lai Kwok Leung, Wing Tak Wong\",\"doi\":\"10.1186/s12935-024-03506-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer, the most prevalent and aggressive tumor affecting women, requires identification of disease determinants to facilitate the development of effective therapeutic strategies. Transient receptor potential vanilloid 2 (TRPV2), an ion channel highly permeable for calcium (Ca<sup>2+</sup>), is implicated in physiological and pathological processes. Nevertheless, the role of TRPV2 in breast cancer remains poorly elucidated. In this study, we found high levels of TRPV2 expression associated with advanced malignancy, thereby suggesting its potential as a biomarker for breast cancer staging. We demonstrated that TRPV2 activation promotes breast cancer cell proliferation, migration, and invasion, while silencing of TRPV2 suppresses breast cancer progression, highlighting the oncogenic role of TRPV2. Moreover, we reveal that TRPV2 facilitates cancer progression by modulating the CaMKKβ/AMPK/ULK1-autophagic axis through mediating calcium influx, providing new insights into TRPV2 as a novel therapeutic target for breast cancer treatment.</p>\",\"PeriodicalId\":9385,\"journal\":{\"name\":\"Cancer Cell International\",\"volume\":\"24 1\",\"pages\":\"324\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438410/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12935-024-03506-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-024-03506-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
TRPV2 calcium channel promotes breast cancer progression potential by activating autophagy.
Breast cancer, the most prevalent and aggressive tumor affecting women, requires identification of disease determinants to facilitate the development of effective therapeutic strategies. Transient receptor potential vanilloid 2 (TRPV2), an ion channel highly permeable for calcium (Ca2+), is implicated in physiological and pathological processes. Nevertheless, the role of TRPV2 in breast cancer remains poorly elucidated. In this study, we found high levels of TRPV2 expression associated with advanced malignancy, thereby suggesting its potential as a biomarker for breast cancer staging. We demonstrated that TRPV2 activation promotes breast cancer cell proliferation, migration, and invasion, while silencing of TRPV2 suppresses breast cancer progression, highlighting the oncogenic role of TRPV2. Moreover, we reveal that TRPV2 facilitates cancer progression by modulating the CaMKKβ/AMPK/ULK1-autophagic axis through mediating calcium influx, providing new insights into TRPV2 as a novel therapeutic target for breast cancer treatment.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.