John Brendan Ritchie, Spencer T Andrews, Maryam Vaziri-Pashkam, Chris I Baker
{"title":"可抓握的食物和工具会在视觉皮层引起类似的反应。","authors":"John Brendan Ritchie, Spencer T Andrews, Maryam Vaziri-Pashkam, Chris I Baker","doi":"10.1093/cercor/bhae383","DOIUrl":null,"url":null,"abstract":"<p><p>The extrastriatal visual cortex is known to exhibit distinct response profiles to complex stimuli of varying ecological importance (e.g. faces, scenes, and tools). Although food is primarily distinguished from other objects by its edibility, not its appearance, recent evidence suggests that there is also food selectivity in human visual cortex. Food is also associated with a common behavior, eating, and food consumption typically also involves the manipulation of food, often with hands. In this context, food items share many properties with tools: they are graspable objects that we manipulate in self-directed and stereotyped forms of action. Thus, food items may be preferentially represented in extrastriatal visual cortex in part because of these shared affordance properties, rather than because they reflect a wholly distinct kind of category. We conducted functional MRI and behavioral experiments to test this hypothesis. We found that graspable food items and tools were judged to be similar in their action-related properties and that the location, magnitude, and patterns of neural responses for images of graspable food items were similar in profile to the responses for tool stimuli. Our findings suggest that food selectivity may reflect the behavioral affordances of food items rather than a distinct form of category selectivity.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graspable foods and tools elicit similar responses in visual cortex.\",\"authors\":\"John Brendan Ritchie, Spencer T Andrews, Maryam Vaziri-Pashkam, Chris I Baker\",\"doi\":\"10.1093/cercor/bhae383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The extrastriatal visual cortex is known to exhibit distinct response profiles to complex stimuli of varying ecological importance (e.g. faces, scenes, and tools). Although food is primarily distinguished from other objects by its edibility, not its appearance, recent evidence suggests that there is also food selectivity in human visual cortex. Food is also associated with a common behavior, eating, and food consumption typically also involves the manipulation of food, often with hands. In this context, food items share many properties with tools: they are graspable objects that we manipulate in self-directed and stereotyped forms of action. Thus, food items may be preferentially represented in extrastriatal visual cortex in part because of these shared affordance properties, rather than because they reflect a wholly distinct kind of category. We conducted functional MRI and behavioral experiments to test this hypothesis. We found that graspable food items and tools were judged to be similar in their action-related properties and that the location, magnitude, and patterns of neural responses for images of graspable food items were similar in profile to the responses for tool stimuli. Our findings suggest that food selectivity may reflect the behavioral affordances of food items rather than a distinct form of category selectivity.</p>\",\"PeriodicalId\":9715,\"journal\":{\"name\":\"Cerebral cortex\",\"volume\":\"34 9\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral cortex\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cercor/bhae383\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae383","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Graspable foods and tools elicit similar responses in visual cortex.
The extrastriatal visual cortex is known to exhibit distinct response profiles to complex stimuli of varying ecological importance (e.g. faces, scenes, and tools). Although food is primarily distinguished from other objects by its edibility, not its appearance, recent evidence suggests that there is also food selectivity in human visual cortex. Food is also associated with a common behavior, eating, and food consumption typically also involves the manipulation of food, often with hands. In this context, food items share many properties with tools: they are graspable objects that we manipulate in self-directed and stereotyped forms of action. Thus, food items may be preferentially represented in extrastriatal visual cortex in part because of these shared affordance properties, rather than because they reflect a wholly distinct kind of category. We conducted functional MRI and behavioral experiments to test this hypothesis. We found that graspable food items and tools were judged to be similar in their action-related properties and that the location, magnitude, and patterns of neural responses for images of graspable food items were similar in profile to the responses for tool stimuli. Our findings suggest that food selectivity may reflect the behavioral affordances of food items rather than a distinct form of category selectivity.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.