{"title":"帕金森病的代谢网络连接紊乱:一种新的成像生物标记。","authors":"Bei Chen, Xiran Chen, Liling Peng, Shiqi Liu, Yongxiang Tang, Xin Gao","doi":"10.1093/cercor/bhae355","DOIUrl":null,"url":null,"abstract":"<p><p>The diagnosis of Parkinson's Disease (PD) presents ongoing challenges. Advances in imaging techniques like 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) have highlighted metabolic alterations in PD, yet the dynamic network interactions within the metabolic connectome remain elusive. To this end, we examined a dataset comprising 49 PD patients and 49 healthy controls. By employing a personalized metabolic connectome approach, we assessed both within- and between-network connectivities using Standard Uptake Value (SUV) and Jensen-Shannon Divergence Similarity Estimation (JSSE). A random forest algorithm was utilized to pinpoint key neuroimaging features differentiating PD from healthy states. Specifically, the results revealed heightened internetwork connectivity in PD, specifically within the somatomotor (SMN) and frontoparietal (FPN) networks, persisting after multiple comparison corrections (P < 0.05, Bonferroni adjusted for 10% and 20% sparsity). This altered connectivity effectively distinguished PD patients from healthy individuals. Notably, this study utilizes 18F-FDG PET imaging to map individual metabolic networks, revealing enhanced connectivity in the SMN and FPN among PD patients. This enhanced connectivity may serve as a promising imaging biomarker, offering a valuable asset for early PD detection.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic network connectivity disturbances in Parkinson's disease: a novel imaging biomarker.\",\"authors\":\"Bei Chen, Xiran Chen, Liling Peng, Shiqi Liu, Yongxiang Tang, Xin Gao\",\"doi\":\"10.1093/cercor/bhae355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The diagnosis of Parkinson's Disease (PD) presents ongoing challenges. Advances in imaging techniques like 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) have highlighted metabolic alterations in PD, yet the dynamic network interactions within the metabolic connectome remain elusive. To this end, we examined a dataset comprising 49 PD patients and 49 healthy controls. By employing a personalized metabolic connectome approach, we assessed both within- and between-network connectivities using Standard Uptake Value (SUV) and Jensen-Shannon Divergence Similarity Estimation (JSSE). A random forest algorithm was utilized to pinpoint key neuroimaging features differentiating PD from healthy states. Specifically, the results revealed heightened internetwork connectivity in PD, specifically within the somatomotor (SMN) and frontoparietal (FPN) networks, persisting after multiple comparison corrections (P < 0.05, Bonferroni adjusted for 10% and 20% sparsity). This altered connectivity effectively distinguished PD patients from healthy individuals. Notably, this study utilizes 18F-FDG PET imaging to map individual metabolic networks, revealing enhanced connectivity in the SMN and FPN among PD patients. This enhanced connectivity may serve as a promising imaging biomarker, offering a valuable asset for early PD detection.</p>\",\"PeriodicalId\":9715,\"journal\":{\"name\":\"Cerebral cortex\",\"volume\":\"34 9\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral cortex\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cercor/bhae355\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae355","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Metabolic network connectivity disturbances in Parkinson's disease: a novel imaging biomarker.
The diagnosis of Parkinson's Disease (PD) presents ongoing challenges. Advances in imaging techniques like 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) have highlighted metabolic alterations in PD, yet the dynamic network interactions within the metabolic connectome remain elusive. To this end, we examined a dataset comprising 49 PD patients and 49 healthy controls. By employing a personalized metabolic connectome approach, we assessed both within- and between-network connectivities using Standard Uptake Value (SUV) and Jensen-Shannon Divergence Similarity Estimation (JSSE). A random forest algorithm was utilized to pinpoint key neuroimaging features differentiating PD from healthy states. Specifically, the results revealed heightened internetwork connectivity in PD, specifically within the somatomotor (SMN) and frontoparietal (FPN) networks, persisting after multiple comparison corrections (P < 0.05, Bonferroni adjusted for 10% and 20% sparsity). This altered connectivity effectively distinguished PD patients from healthy individuals. Notably, this study utilizes 18F-FDG PET imaging to map individual metabolic networks, revealing enhanced connectivity in the SMN and FPN among PD patients. This enhanced connectivity may serve as a promising imaging biomarker, offering a valuable asset for early PD detection.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.