Simin Salarpour, Soodeh Salarpour, Mehdi Ansari Dogaheh
{"title":"利用人工神经网络推进制药科学:优化给药系统配方综述》。","authors":"Simin Salarpour, Soodeh Salarpour, Mehdi Ansari Dogaheh","doi":"10.2174/0113816128301129240911064028","DOIUrl":null,"url":null,"abstract":"<p><p>Drug Delivery Systems (DDS) have been developed to address the challenges associated with traditional drug delivery methods. These DDS aim to improve drug administration, enhance patient compliance, reduce side effects, and optimize target therapy. To achieve these goals, it is crucial to design DDS with optimal performance characteristics. The final properties of a DDS are determined by several factors that go into formulating a pharmaceutical preparation. Thus, optimizing these factors can lead to the ideal DDS formulation. Artificial Neural Networks (ANN) are computational models that mimic the function of biological neurons and neural networks and perform mathematical operations on inputs to generate outputs. ANN is widely used in medical sciences for modeling disease diagnosis and treatment, dose adjustment in combination therapy, medical education, and other fields. In the pharmaceutical sciences, ANN has gained significant attention for designing and optimizing pharmaceutical formulations. This article reviews the use of ANN in the design and optimization of pharmaceutical formulations, specifically DDS. Since DDS is highly diverse, different factors are examined for each type of DDS. These factors are considered independent and dependent parameters for each ANN model, and various examples are provided. By utilizing ANN, it is possible to establish the relationship between the formulation factors and the resulting DDS characteristics, ultimately leading to the development of optimized DDS.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Pharmaceutical Science with Artificial Neural Networks: A Review on Optimizing Drug Delivery Systems Formulation.\",\"authors\":\"Simin Salarpour, Soodeh Salarpour, Mehdi Ansari Dogaheh\",\"doi\":\"10.2174/0113816128301129240911064028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug Delivery Systems (DDS) have been developed to address the challenges associated with traditional drug delivery methods. These DDS aim to improve drug administration, enhance patient compliance, reduce side effects, and optimize target therapy. To achieve these goals, it is crucial to design DDS with optimal performance characteristics. The final properties of a DDS are determined by several factors that go into formulating a pharmaceutical preparation. Thus, optimizing these factors can lead to the ideal DDS formulation. Artificial Neural Networks (ANN) are computational models that mimic the function of biological neurons and neural networks and perform mathematical operations on inputs to generate outputs. ANN is widely used in medical sciences for modeling disease diagnosis and treatment, dose adjustment in combination therapy, medical education, and other fields. In the pharmaceutical sciences, ANN has gained significant attention for designing and optimizing pharmaceutical formulations. This article reviews the use of ANN in the design and optimization of pharmaceutical formulations, specifically DDS. Since DDS is highly diverse, different factors are examined for each type of DDS. These factors are considered independent and dependent parameters for each ANN model, and various examples are provided. By utilizing ANN, it is possible to establish the relationship between the formulation factors and the resulting DDS characteristics, ultimately leading to the development of optimized DDS.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128301129240911064028\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128301129240911064028","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Advancing Pharmaceutical Science with Artificial Neural Networks: A Review on Optimizing Drug Delivery Systems Formulation.
Drug Delivery Systems (DDS) have been developed to address the challenges associated with traditional drug delivery methods. These DDS aim to improve drug administration, enhance patient compliance, reduce side effects, and optimize target therapy. To achieve these goals, it is crucial to design DDS with optimal performance characteristics. The final properties of a DDS are determined by several factors that go into formulating a pharmaceutical preparation. Thus, optimizing these factors can lead to the ideal DDS formulation. Artificial Neural Networks (ANN) are computational models that mimic the function of biological neurons and neural networks and perform mathematical operations on inputs to generate outputs. ANN is widely used in medical sciences for modeling disease diagnosis and treatment, dose adjustment in combination therapy, medical education, and other fields. In the pharmaceutical sciences, ANN has gained significant attention for designing and optimizing pharmaceutical formulations. This article reviews the use of ANN in the design and optimization of pharmaceutical formulations, specifically DDS. Since DDS is highly diverse, different factors are examined for each type of DDS. These factors are considered independent and dependent parameters for each ANN model, and various examples are provided. By utilizing ANN, it is possible to establish the relationship between the formulation factors and the resulting DDS characteristics, ultimately leading to the development of optimized DDS.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.