Matilde Durán-Lobato, Sulay Tovar, Tadeu de Oliveira Diz, Miguel Chenlo, Clara V Álvarez, María José Alonso
{"title":"通过冷冻干燥法制备负载蛋白质的纳米颗粒。","authors":"Matilde Durán-Lobato, Sulay Tovar, Tadeu de Oliveira Diz, Miguel Chenlo, Clara V Álvarez, María José Alonso","doi":"10.1007/s13346-024-01712-9","DOIUrl":null,"url":null,"abstract":"<p><p>Several nanotechnology-based formulation strategies have been reported for the oral administration of biological drugs. However, a prerequisite often overlooked in developing these formulations is their adaptation to a solid dosage form. This study aimed to incorporate a freeze-drying step, using either mannitol or sucrose laurate (SLAE), into the formulation of new insulin-zinc nanocomplexes to render them resistant to intestinal fluids while maintaining a high protein loading. The resulting freeze-dried insulin-zinc nanocomplexes exhibited physicochemical properties consistent with the target product profile, including a particle size of ∼ 100 nm, a zeta potential close to neutrality (∼ -15 mV) and a high association efficiency (> 90%). Importantly, integrating the freeze-drying step in the formulation significantly improved the colloidal stability of the system and preserved the stability of the insulin molecules. Results from in vitro and in vivo studies indicated that the insulin activity remained fully retained throughout the entire formulation and freeze-drying processes. In brief, we present a novel protein formulation strategy that incorporates a critical freeze-drying step, resulting in a dry powder enabling efficient protein complexation with zinc and optimized for oral administration.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"3640-3653"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation of protein-loaded nanoparticles via freeze-drying.\",\"authors\":\"Matilde Durán-Lobato, Sulay Tovar, Tadeu de Oliveira Diz, Miguel Chenlo, Clara V Álvarez, María José Alonso\",\"doi\":\"10.1007/s13346-024-01712-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several nanotechnology-based formulation strategies have been reported for the oral administration of biological drugs. However, a prerequisite often overlooked in developing these formulations is their adaptation to a solid dosage form. This study aimed to incorporate a freeze-drying step, using either mannitol or sucrose laurate (SLAE), into the formulation of new insulin-zinc nanocomplexes to render them resistant to intestinal fluids while maintaining a high protein loading. The resulting freeze-dried insulin-zinc nanocomplexes exhibited physicochemical properties consistent with the target product profile, including a particle size of ∼ 100 nm, a zeta potential close to neutrality (∼ -15 mV) and a high association efficiency (> 90%). Importantly, integrating the freeze-drying step in the formulation significantly improved the colloidal stability of the system and preserved the stability of the insulin molecules. Results from in vitro and in vivo studies indicated that the insulin activity remained fully retained throughout the entire formulation and freeze-drying processes. In brief, we present a novel protein formulation strategy that incorporates a critical freeze-drying step, resulting in a dry powder enabling efficient protein complexation with zinc and optimized for oral administration.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"3640-3653\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-024-01712-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01712-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Formulation of protein-loaded nanoparticles via freeze-drying.
Several nanotechnology-based formulation strategies have been reported for the oral administration of biological drugs. However, a prerequisite often overlooked in developing these formulations is their adaptation to a solid dosage form. This study aimed to incorporate a freeze-drying step, using either mannitol or sucrose laurate (SLAE), into the formulation of new insulin-zinc nanocomplexes to render them resistant to intestinal fluids while maintaining a high protein loading. The resulting freeze-dried insulin-zinc nanocomplexes exhibited physicochemical properties consistent with the target product profile, including a particle size of ∼ 100 nm, a zeta potential close to neutrality (∼ -15 mV) and a high association efficiency (> 90%). Importantly, integrating the freeze-drying step in the formulation significantly improved the colloidal stability of the system and preserved the stability of the insulin molecules. Results from in vitro and in vivo studies indicated that the insulin activity remained fully retained throughout the entire formulation and freeze-drying processes. In brief, we present a novel protein formulation strategy that incorporates a critical freeze-drying step, resulting in a dry powder enabling efficient protein complexation with zinc and optimized for oral administration.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.