{"title":"靶向鞘氨醇-1-磷酸途径:炎症性肠病治疗的新机遇。","authors":"Konstantina Kitsou, Georgios Kokkotis, Jesús Rivera-Nieves, Giorgos Bamias","doi":"10.1007/s40265-024-02094-5","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC) are chronic immune-mediated diseases which primarily target the intestines. In recent years, the development and regulatory approval of various immunotherapies, both biological agents and small molecules, that target specific pathways of the IBD-associated inflammatory cascade have revolutionized the treatment of IBD. Small molecules offer the advantages of oral administration and short wash-out times. Sphingosine-1-phosphate (S1P) is a bioactive metabolite of ceramide, which exerts its functions after binding to five G-protein-coupled receptors (S1PR1-S1PR5). Concerning IBD, S1P participates in the egress of lymphocytes from the secondary lymphoid tissue and their re-circulation to sites of inflammation, mainly through S1PR1 binding. In addition, this system facilitates the differentiation of T-helper cells towards proinflammatory immunophenotypes. Recently, S1P modulators have offered a valuable addition to the IBD treatment armamentarium. They exert their anti-inflammatory function via sequestration of T cell subsets in the lymphoid tissues and prevention of gut homing. In this review, we revisit the role of the S1P/S1PR axis in the pathogenesis of IBD and discuss efficacy and safety data from clinical trials and real-world reports on the two S1PR modulators, ozanimod and etrasimod, that are currently approved for IBD treatment, and comment on their potential positioning in the IBD day-to-day management. We also present recent data on emerging S1P modulators. Finally, based on the successes and failures of S1PR modulators in IBD, we discuss future avenues of IBD treatments targeting the S1P/S1PR axis.</p>","PeriodicalId":11482,"journal":{"name":"Drugs","volume":" ","pages":"1179-1197"},"PeriodicalIF":13.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting the Sphingosine-1-Phosphate Pathway: New Opportunities in Inflammatory Bowel Disease Management.\",\"authors\":\"Konstantina Kitsou, Georgios Kokkotis, Jesús Rivera-Nieves, Giorgos Bamias\",\"doi\":\"10.1007/s40265-024-02094-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC) are chronic immune-mediated diseases which primarily target the intestines. In recent years, the development and regulatory approval of various immunotherapies, both biological agents and small molecules, that target specific pathways of the IBD-associated inflammatory cascade have revolutionized the treatment of IBD. Small molecules offer the advantages of oral administration and short wash-out times. Sphingosine-1-phosphate (S1P) is a bioactive metabolite of ceramide, which exerts its functions after binding to five G-protein-coupled receptors (S1PR1-S1PR5). Concerning IBD, S1P participates in the egress of lymphocytes from the secondary lymphoid tissue and their re-circulation to sites of inflammation, mainly through S1PR1 binding. In addition, this system facilitates the differentiation of T-helper cells towards proinflammatory immunophenotypes. Recently, S1P modulators have offered a valuable addition to the IBD treatment armamentarium. They exert their anti-inflammatory function via sequestration of T cell subsets in the lymphoid tissues and prevention of gut homing. In this review, we revisit the role of the S1P/S1PR axis in the pathogenesis of IBD and discuss efficacy and safety data from clinical trials and real-world reports on the two S1PR modulators, ozanimod and etrasimod, that are currently approved for IBD treatment, and comment on their potential positioning in the IBD day-to-day management. We also present recent data on emerging S1P modulators. Finally, based on the successes and failures of S1PR modulators in IBD, we discuss future avenues of IBD treatments targeting the S1P/S1PR axis.</p>\",\"PeriodicalId\":11482,\"journal\":{\"name\":\"Drugs\",\"volume\":\" \",\"pages\":\"1179-1197\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40265-024-02094-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40265-024-02094-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Targeting the Sphingosine-1-Phosphate Pathway: New Opportunities in Inflammatory Bowel Disease Management.
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC) are chronic immune-mediated diseases which primarily target the intestines. In recent years, the development and regulatory approval of various immunotherapies, both biological agents and small molecules, that target specific pathways of the IBD-associated inflammatory cascade have revolutionized the treatment of IBD. Small molecules offer the advantages of oral administration and short wash-out times. Sphingosine-1-phosphate (S1P) is a bioactive metabolite of ceramide, which exerts its functions after binding to five G-protein-coupled receptors (S1PR1-S1PR5). Concerning IBD, S1P participates in the egress of lymphocytes from the secondary lymphoid tissue and their re-circulation to sites of inflammation, mainly through S1PR1 binding. In addition, this system facilitates the differentiation of T-helper cells towards proinflammatory immunophenotypes. Recently, S1P modulators have offered a valuable addition to the IBD treatment armamentarium. They exert their anti-inflammatory function via sequestration of T cell subsets in the lymphoid tissues and prevention of gut homing. In this review, we revisit the role of the S1P/S1PR axis in the pathogenesis of IBD and discuss efficacy and safety data from clinical trials and real-world reports on the two S1PR modulators, ozanimod and etrasimod, that are currently approved for IBD treatment, and comment on their potential positioning in the IBD day-to-day management. We also present recent data on emerging S1P modulators. Finally, based on the successes and failures of S1PR modulators in IBD, we discuss future avenues of IBD treatments targeting the S1P/S1PR axis.
期刊介绍:
Drugs is a journal that aims to enhance pharmacotherapy by publishing review and original research articles on key aspects of clinical pharmacology and therapeutics. The journal includes:
Leading/current opinion articles providing an overview of contentious or emerging issues.
Definitive reviews of drugs and drug classes, and their place in disease management.
Therapy in Practice articles including recommendations for specific clinical situations.
High-quality, well designed, original clinical research.
Adis Drug Evaluations reviewing the properties and place in therapy of both newer and established drugs.
AdisInsight Reports summarising development at first global approval.
Moreover, the journal offers additional digital features such as animated abstracts, video abstracts, instructional videos, and podcasts to increase visibility and educational value. Plain language summaries accompany articles to assist readers with some knowledge of the field in understanding important medical advances.