锂离子电池阴极材料合成用聚合物和螯合凝胶前驱体综述。

IF 5 3区 化学 Q1 POLYMER SCIENCE Gels Pub Date : 2024-09-12 DOI:10.3390/gels10090586
Mobinul Islam, Md Shahriar Ahmed, Muhammad Faizan, Basit Ali, Md Murshed Bhuyan, Gazi A K M Rafiqul Bari, Kyung-Wan Nam
{"title":"锂离子电池阴极材料合成用聚合物和螯合凝胶前驱体综述。","authors":"Mobinul Islam, Md Shahriar Ahmed, Muhammad Faizan, Basit Ali, Md Murshed Bhuyan, Gazi A K M Rafiqul Bari, Kyung-Wan Nam","doi":"10.3390/gels10090586","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid design of advanced materials depends on synthesis parameters and design. A wide range of materials can be synthesized using precursor reactions based on chelated gel and organic polymeric gel pathways. The desire to develop high-performance lithium-ion rechargeable batteries has motivated decades of research on the synthesis of battery active material particles with precise control of composition, phase-purity, and morphology. Among the most common methods reported in the literature to prepare precursors for lithium-ion battery active materials, sol-gel is characterized by simplicity, homogeneous mixing, and tuning of the particle shape. The chelate gel and organic polymeric gel precursor-based sol-gel method is efficient to promote desirable reaction conditions. Both precursor routes are commonly used to synthesize lithium-ion battery cathode active materials from raw materials such as inorganic salts in aqueous solutions or organic solvents. The purpose of this review is to discuss synthesis procedure and summarize the progress that has been made in producing crystalline particles of tunable and complex morphologies by sol-gel synthesis that can be used as active materials for lithium-ion batteries.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 9","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431264/pdf/","citationCount":"0","resultStr":"{\"title\":\"Review on the Polymeric and Chelate Gel Precursor for Li-Ion Battery Cathode Material Synthesis.\",\"authors\":\"Mobinul Islam, Md Shahriar Ahmed, Muhammad Faizan, Basit Ali, Md Murshed Bhuyan, Gazi A K M Rafiqul Bari, Kyung-Wan Nam\",\"doi\":\"10.3390/gels10090586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid design of advanced materials depends on synthesis parameters and design. A wide range of materials can be synthesized using precursor reactions based on chelated gel and organic polymeric gel pathways. The desire to develop high-performance lithium-ion rechargeable batteries has motivated decades of research on the synthesis of battery active material particles with precise control of composition, phase-purity, and morphology. Among the most common methods reported in the literature to prepare precursors for lithium-ion battery active materials, sol-gel is characterized by simplicity, homogeneous mixing, and tuning of the particle shape. The chelate gel and organic polymeric gel precursor-based sol-gel method is efficient to promote desirable reaction conditions. Both precursor routes are commonly used to synthesize lithium-ion battery cathode active materials from raw materials such as inorganic salts in aqueous solutions or organic solvents. The purpose of this review is to discuss synthesis procedure and summarize the progress that has been made in producing crystalline particles of tunable and complex morphologies by sol-gel synthesis that can be used as active materials for lithium-ion batteries.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431264/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10090586\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10090586","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

先进材料的快速设计取决于合成参数和设计。基于螯合凝胶和有机聚合物凝胶途径的前驱体反应可以合成多种材料。开发高性能锂离子充电电池的愿望推动了数十年来对电池活性材料颗粒合成的研究,这些颗粒的成分、相纯度和形态都得到了精确控制。在文献报道的制备锂离子电池活性材料前体的最常见方法中,溶胶-凝胶法的特点是简单、混合均匀和颗粒形状可调。基于螯合凝胶和有机聚合物凝胶前驱体的溶胶-凝胶法能有效促进理想的反应条件。这两种前驱体路线通常用于从水溶液或有机溶剂中的无机盐等原材料合成锂离子电池正极活性材料。本综述旨在讨论合成程序,并总结在通过溶胶-凝胶合成法生产可用作锂离子电池活性材料的可调且形态复杂的结晶颗粒方面所取得的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review on the Polymeric and Chelate Gel Precursor for Li-Ion Battery Cathode Material Synthesis.

The rapid design of advanced materials depends on synthesis parameters and design. A wide range of materials can be synthesized using precursor reactions based on chelated gel and organic polymeric gel pathways. The desire to develop high-performance lithium-ion rechargeable batteries has motivated decades of research on the synthesis of battery active material particles with precise control of composition, phase-purity, and morphology. Among the most common methods reported in the literature to prepare precursors for lithium-ion battery active materials, sol-gel is characterized by simplicity, homogeneous mixing, and tuning of the particle shape. The chelate gel and organic polymeric gel precursor-based sol-gel method is efficient to promote desirable reaction conditions. Both precursor routes are commonly used to synthesize lithium-ion battery cathode active materials from raw materials such as inorganic salts in aqueous solutions or organic solvents. The purpose of this review is to discuss synthesis procedure and summarize the progress that has been made in producing crystalline particles of tunable and complex morphologies by sol-gel synthesis that can be used as active materials for lithium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
期刊最新文献
Poly(Vinyl Alcohol) Drug and PVA-Drug-Surfactant Complex Organogel with Dimethyl Sulfoxide as a Drug Delivery System. Crosslinking by Click Chemistry of Hyaluronan Graft Copolymers Involving Resorcinol-Based Cinnamate Derivatives Leading to Gel-like Materials. Organogels of FmocFF: Exploring the Solvent-Dependent Gelmorphic Behavior. Development of Alginate Composite Microparticles for Encapsulation of Bifidobacterium animalis subsp. lactis. Wound Healing Potential of Herbal Hydrogel Formulations of Cedrus brevifolia Extracts in Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1