基于核的分层结构组件模型用于生存表型的通路分析

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Genes & genomics Pub Date : 2024-12-01 Epub Date: 2024-09-26 DOI:10.1007/s13258-024-01569-9
Suhyun Hwangbo, Sungyoung Lee, Md Mozaffar Hosain, Taewan Goo, Seungyeoun Lee, Inyoung Kim, Taesung Park
{"title":"基于核的分层结构组件模型用于生存表型的通路分析","authors":"Suhyun Hwangbo, Sungyoung Lee, Md Mozaffar Hosain, Taewan Goo, Seungyeoun Lee, Inyoung Kim, Taesung Park","doi":"10.1007/s13258-024-01569-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High-throughput sequencing, particularly RNA-sequencing (RNA-seq), has advanced differential gene expression analysis, revealing pathways involved in various biological conditions. Traditional pathway-based methods generally consider pathways independently, overlooking the correlations among them and ignoring quite a few overlapping biomarkers between pathways. In addition, most pathway-based approaches assume that biomarkers have linear effects on the phenotype of interest.</p><p><strong>Objective: </strong>This study aims to develop the HisCoM-KernelS model to identify survival phenotype-related pathways by accommodating complex, nonlinear relationships between genes and survival outcomes, while accounting for inter-pathway correlations.</p><p><strong>Methods: </strong>We applied HisCoM-KernelS model to the TCGA pancreatic ductal adenocarcinoma (PDAC) RNA-seq dataset, comprising 4,498 protein-coding genes mapped to 186 KEGG pathways from 148 PDAC samples. Kernel machine regression was used to model pathway effects on survival outcomes, incorporating hierarchical gene-pathway structures. Model parameters were estimated using the alternating least squares algorithm, and the significance of pathways was assessed through a permutation test.</p><p><strong>Results: </strong>HisCoM-KernelS identified several pathways significantly associated with pancreatic cancer survival, including those corroborated by previous studies. HisCoM-KernelS, especially with the Gaussian kernel, showed a better balance of detection rate and number of significant pathways compared to four other existing pathway-based methods: HisCoM-PAGE, Global Test, GSEA, and CoxKM.</p><p><strong>Conclusion: </strong>HisCoM-KernelS successfully extends pathway-based analysis to survival outcomes, capturing complex nonlinear gene effects and inter-pathway correlations. Its application to the TCGA PDAC dataset emphasizes its utility in identifying biologically relevant pathways, offering a robust tool for survival phenotype research in high-throughput sequencing data.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":"1415-1421"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel-based hierarchical structural component models for pathway analysis on survival phenotype.\",\"authors\":\"Suhyun Hwangbo, Sungyoung Lee, Md Mozaffar Hosain, Taewan Goo, Seungyeoun Lee, Inyoung Kim, Taesung Park\",\"doi\":\"10.1007/s13258-024-01569-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>High-throughput sequencing, particularly RNA-sequencing (RNA-seq), has advanced differential gene expression analysis, revealing pathways involved in various biological conditions. Traditional pathway-based methods generally consider pathways independently, overlooking the correlations among them and ignoring quite a few overlapping biomarkers between pathways. In addition, most pathway-based approaches assume that biomarkers have linear effects on the phenotype of interest.</p><p><strong>Objective: </strong>This study aims to develop the HisCoM-KernelS model to identify survival phenotype-related pathways by accommodating complex, nonlinear relationships between genes and survival outcomes, while accounting for inter-pathway correlations.</p><p><strong>Methods: </strong>We applied HisCoM-KernelS model to the TCGA pancreatic ductal adenocarcinoma (PDAC) RNA-seq dataset, comprising 4,498 protein-coding genes mapped to 186 KEGG pathways from 148 PDAC samples. Kernel machine regression was used to model pathway effects on survival outcomes, incorporating hierarchical gene-pathway structures. Model parameters were estimated using the alternating least squares algorithm, and the significance of pathways was assessed through a permutation test.</p><p><strong>Results: </strong>HisCoM-KernelS identified several pathways significantly associated with pancreatic cancer survival, including those corroborated by previous studies. HisCoM-KernelS, especially with the Gaussian kernel, showed a better balance of detection rate and number of significant pathways compared to four other existing pathway-based methods: HisCoM-PAGE, Global Test, GSEA, and CoxKM.</p><p><strong>Conclusion: </strong>HisCoM-KernelS successfully extends pathway-based analysis to survival outcomes, capturing complex nonlinear gene effects and inter-pathway correlations. Its application to the TCGA PDAC dataset emphasizes its utility in identifying biologically relevant pathways, offering a robust tool for survival phenotype research in high-throughput sequencing data.</p>\",\"PeriodicalId\":12675,\"journal\":{\"name\":\"Genes & genomics\",\"volume\":\" \",\"pages\":\"1415-1421\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13258-024-01569-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01569-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:高通量测序,尤其是 RNA 测序(RNA-seq),推动了差异基因表达分析的发展,揭示了涉及各种生物条件的通路。传统的基于通路的方法通常独立考虑通路,忽略了通路之间的相关性,也忽略了通路之间大量重叠的生物标记物。此外,大多数基于通路的方法都假定生物标记物对相关表型具有线性影响:本研究旨在开发 HisCoM-KernelS 模型,通过考虑基因与生存结果之间复杂的非线性关系,同时考虑通路间的相关性,来识别与生存表型相关的通路:我们将 HisCoM-KernelS 模型应用于 TCGA 胰腺导管腺癌(PDAC)RNA-seq 数据集,该数据集由来自 148 个 PDAC 样本、映射到 186 个 KEGG 通路的 4498 个蛋白编码基因组成。利用核机器回归建立了通路对生存结果影响的模型,并纳入了分层基因通路结构。使用交替最小二乘法估计模型参数,并通过置换检验评估通路的显著性:结果:HisCoM-KernelS发现了几条与胰腺癌生存显著相关的通路,其中包括那些已被先前研究证实的通路。与其他四种基于通路的方法(HisCoM-PAGE、Global Test、GSEA 和 CoxKM)相比,HisCoM-KernelS(尤其是高斯核)在检测率和重要通路数量方面表现出更好的平衡:结论:HisCoM-KernelS 成功地将基于通路的分析扩展到了生存结果,捕捉到了复杂的非线性基因效应和通路间的相关性。它在 TCGA PDAC 数据集上的应用强调了它在识别生物相关通路方面的实用性,为高通量测序数据中的生存表型研究提供了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kernel-based hierarchical structural component models for pathway analysis on survival phenotype.

Background: High-throughput sequencing, particularly RNA-sequencing (RNA-seq), has advanced differential gene expression analysis, revealing pathways involved in various biological conditions. Traditional pathway-based methods generally consider pathways independently, overlooking the correlations among them and ignoring quite a few overlapping biomarkers between pathways. In addition, most pathway-based approaches assume that biomarkers have linear effects on the phenotype of interest.

Objective: This study aims to develop the HisCoM-KernelS model to identify survival phenotype-related pathways by accommodating complex, nonlinear relationships between genes and survival outcomes, while accounting for inter-pathway correlations.

Methods: We applied HisCoM-KernelS model to the TCGA pancreatic ductal adenocarcinoma (PDAC) RNA-seq dataset, comprising 4,498 protein-coding genes mapped to 186 KEGG pathways from 148 PDAC samples. Kernel machine regression was used to model pathway effects on survival outcomes, incorporating hierarchical gene-pathway structures. Model parameters were estimated using the alternating least squares algorithm, and the significance of pathways was assessed through a permutation test.

Results: HisCoM-KernelS identified several pathways significantly associated with pancreatic cancer survival, including those corroborated by previous studies. HisCoM-KernelS, especially with the Gaussian kernel, showed a better balance of detection rate and number of significant pathways compared to four other existing pathway-based methods: HisCoM-PAGE, Global Test, GSEA, and CoxKM.

Conclusion: HisCoM-KernelS successfully extends pathway-based analysis to survival outcomes, capturing complex nonlinear gene effects and inter-pathway correlations. Its application to the TCGA PDAC dataset emphasizes its utility in identifying biologically relevant pathways, offering a robust tool for survival phenotype research in high-throughput sequencing data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes & genomics
Genes & genomics 生物-生化与分子生物学
CiteScore
3.70
自引率
4.80%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.
期刊最新文献
miR-214-3p inhibits LPS-induced macrophage inflammation and attenuates the progression of dry eye syndrome by regulating ferroptosis in cells. Population genetics analysis based on mitochondrial cytochrome c oxidase subunit I (CO1) gene sequences of Cottus koreanus in South Korea. Potential role of ARG1 c.57G > A variant in Argininemia. A combination of upstream alleles involved in rice heading hastens natural long-day responses. Identification and expression analysis of the SPL gene family during flower bud differentiation in Rhododendron molle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1