S2 AAVrh.10 Capsid修饰的AAV载体传递的miRNA抑制中枢神经系统APOE4的表达。

IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Human gene therapy Pub Date : 2024-11-01 Epub Date: 2024-10-16 DOI:10.1089/hum.2024.112
Kalpita R Karan, Slawomir Andrzejewski, Katie M Stiles, Neil R Hackett, Ronald G Crystal
{"title":"S2 AAVrh.10 Capsid修饰的AAV载体传递的miRNA抑制中枢神经系统APOE4的表达。","authors":"Kalpita R Karan, Slawomir Andrzejewski, Katie M Stiles, Neil R Hackett, Ronald G Crystal","doi":"10.1089/hum.2024.112","DOIUrl":null,"url":null,"abstract":"<p><p>The homozygous Apolipoprotein E (APOE4) genotype is the major risk factor for the development of early Alzheimer's disease. Genome engineering studies in mouse models of human APOE4-dependent pathology have established that reduction of APOE4 expression can rescue the phenotype. We hypothesized that APOE4 could be suppressed in the CNS of APOE4 homozygotes using adeno-associated virus (AAV) expression of microRNAs (miRNA) designed to hybridize to APOE mRNA. We screened nine different miRNAs targeting APOE following transfection in HEK293T and Huh7 cells. Optimal APOE suppression was obtained with mir2A (targeting coding region nt330-351) and mirN4 (3' untranslated region nt1142-1162). miRNA expression cassettes were designed with two copies of each of these two miRNAs co-expressed with a mCherry transgene. To optimize delivery of these miRNAs, an engineered AAVrh.10 variant was identified from a screen of multiple peptide insertions into capsid loop IV and substitutions in loop VIII. This led to identifying the AAV.S2 capsid with enhanced transduction of both neurons and glia and enhanced distribution in the brain. The engineered capsid was used to deliver the APOE miRNA suppression cassette to the hippocampus of TRE4 mice (human APOE4 knock-in replacement of the murine apoE locus). Two weeks after intra-hippocampus administration, regional expression of miRNA at the injection site was quantified at the mRNA level relative to an endogenous reference. The AAV.S2 capsid provided 2.31 ± 0.37-fold higher expression of miRNA over that provided by AAVrh.10 (<i>p</i> < 0.05). In the targeted region, a single intra-hippocampus AAV.S2 administration suppressed hippocampal APOE4 mRNA levels by 76.5 ± 3.9% compared with 41.3 ± 3.3% with the same cassette delivered by the wildtype AAVrh.10 capsid (<i>p</i> < 0.0001). We conclude that an expression cassette with two different miRNAs targeting APOE4 delivered by the AAV.S2 capsid will generate highly significant suppression of APOE4 in the CNS.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"904-916"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of CNS APOE4 Expression by miRNAs Delivered by the S2 AAVrh.10 Capsid-Modified AAV Vector.\",\"authors\":\"Kalpita R Karan, Slawomir Andrzejewski, Katie M Stiles, Neil R Hackett, Ronald G Crystal\",\"doi\":\"10.1089/hum.2024.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The homozygous Apolipoprotein E (APOE4) genotype is the major risk factor for the development of early Alzheimer's disease. Genome engineering studies in mouse models of human APOE4-dependent pathology have established that reduction of APOE4 expression can rescue the phenotype. We hypothesized that APOE4 could be suppressed in the CNS of APOE4 homozygotes using adeno-associated virus (AAV) expression of microRNAs (miRNA) designed to hybridize to APOE mRNA. We screened nine different miRNAs targeting APOE following transfection in HEK293T and Huh7 cells. Optimal APOE suppression was obtained with mir2A (targeting coding region nt330-351) and mirN4 (3' untranslated region nt1142-1162). miRNA expression cassettes were designed with two copies of each of these two miRNAs co-expressed with a mCherry transgene. To optimize delivery of these miRNAs, an engineered AAVrh.10 variant was identified from a screen of multiple peptide insertions into capsid loop IV and substitutions in loop VIII. This led to identifying the AAV.S2 capsid with enhanced transduction of both neurons and glia and enhanced distribution in the brain. The engineered capsid was used to deliver the APOE miRNA suppression cassette to the hippocampus of TRE4 mice (human APOE4 knock-in replacement of the murine apoE locus). Two weeks after intra-hippocampus administration, regional expression of miRNA at the injection site was quantified at the mRNA level relative to an endogenous reference. The AAV.S2 capsid provided 2.31 ± 0.37-fold higher expression of miRNA over that provided by AAVrh.10 (<i>p</i> < 0.05). In the targeted region, a single intra-hippocampus AAV.S2 administration suppressed hippocampal APOE4 mRNA levels by 76.5 ± 3.9% compared with 41.3 ± 3.3% with the same cassette delivered by the wildtype AAVrh.10 capsid (<i>p</i> < 0.0001). We conclude that an expression cassette with two different miRNAs targeting APOE4 delivered by the AAV.S2 capsid will generate highly significant suppression of APOE4 in the CNS.</p>\",\"PeriodicalId\":13007,\"journal\":{\"name\":\"Human gene therapy\",\"volume\":\" \",\"pages\":\"904-916\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/hum.2024.112\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2024.112","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

同型APOE4基因型是早期阿尔茨海默病发病的主要风险因素。在人类 APOE4 依赖性病理小鼠模型中进行的基因组工程研究证实,减少 APOE4 的表达可以挽救表型。我们假设,利用腺相关病毒(AAV)表达与 APOE mRNA 杂交的微小 RNA(miRNA),可抑制 APOE4 基因在 APOE4 同源基因中枢神经系统中的表达。我们在 HEK293T 和 Huh7 细胞中转染后筛选了 9 种不同的靶向 APOE 的 miRNA。mir2A(靶向编码区 nt330-351)和 mirN4(3' 非翻译区 nt1142-1162)对 APOE 的抑制效果最佳。为了优化这些 miRNAs 的递送,通过对多个肽插入纤毛环 IV 和替换纤毛环 VIII 的筛选,确定了 AAVrh.10 的工程变体。这就确定了 AAV.S2 的噬菌体,它能增强对神经元和胶质细胞的转导,并增强在大脑中的分布。我们利用改造后的囊壳将 APOE miRNA 抑制盒输送到 TRE4 小鼠(人类 APOE4 基因敲入替代小鼠 apoE 基因座)的海马中。海马内给药两周后,对注射部位的 miRNA 表达进行了 mRNA 水平的量化,并与内源性参照物进行了比较。与 AAVrh.10 相比,AAV.S2 外壳提供的 miRNA 表达量高出 2.31 ± 0.37 倍(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Suppression of CNS APOE4 Expression by miRNAs Delivered by the S2 AAVrh.10 Capsid-Modified AAV Vector.

The homozygous Apolipoprotein E (APOE4) genotype is the major risk factor for the development of early Alzheimer's disease. Genome engineering studies in mouse models of human APOE4-dependent pathology have established that reduction of APOE4 expression can rescue the phenotype. We hypothesized that APOE4 could be suppressed in the CNS of APOE4 homozygotes using adeno-associated virus (AAV) expression of microRNAs (miRNA) designed to hybridize to APOE mRNA. We screened nine different miRNAs targeting APOE following transfection in HEK293T and Huh7 cells. Optimal APOE suppression was obtained with mir2A (targeting coding region nt330-351) and mirN4 (3' untranslated region nt1142-1162). miRNA expression cassettes were designed with two copies of each of these two miRNAs co-expressed with a mCherry transgene. To optimize delivery of these miRNAs, an engineered AAVrh.10 variant was identified from a screen of multiple peptide insertions into capsid loop IV and substitutions in loop VIII. This led to identifying the AAV.S2 capsid with enhanced transduction of both neurons and glia and enhanced distribution in the brain. The engineered capsid was used to deliver the APOE miRNA suppression cassette to the hippocampus of TRE4 mice (human APOE4 knock-in replacement of the murine apoE locus). Two weeks after intra-hippocampus administration, regional expression of miRNA at the injection site was quantified at the mRNA level relative to an endogenous reference. The AAV.S2 capsid provided 2.31 ± 0.37-fold higher expression of miRNA over that provided by AAVrh.10 (p < 0.05). In the targeted region, a single intra-hippocampus AAV.S2 administration suppressed hippocampal APOE4 mRNA levels by 76.5 ± 3.9% compared with 41.3 ± 3.3% with the same cassette delivered by the wildtype AAVrh.10 capsid (p < 0.0001). We conclude that an expression cassette with two different miRNAs targeting APOE4 delivered by the AAV.S2 capsid will generate highly significant suppression of APOE4 in the CNS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human gene therapy
Human gene therapy 医学-生物工程与应用微生物
CiteScore
6.50
自引率
4.80%
发文量
131
审稿时长
4-8 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
期刊最新文献
Focused Ultrasounds as an Adeno-Associated Virus Gene Therapy-Empowering Tool in Juvenile Mice via Intracerebroventricular Administration. Neuroimaging Applications for the Delivery and Monitoring of Gene Therapy for Central Nervous System Diseases. Oncolytic Vaccinia Virus Encoding Aphrocallistes vastus Lectin Suppresses the Proliferation of Gastric Cancer Cells. Suppression of CNS APOE4 Expression by miRNAs Delivered by the S2 AAVrh.10 Capsid-Modified AAV Vector. Lentiviral Vector-Mediated Ex Vivo Hematopoietic Stem Cell Gene Therapy for Mucopolysaccharidosis IVA Murine Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1