{"title":"反常扩散现象对有界环境中分子信息传递的影响","authors":"Lokendra Chouhan","doi":"10.1109/TNB.2024.3467695","DOIUrl":null,"url":null,"abstract":"<p><p>Through this paper, a three-dimensional molecular communication (MC) inside a cuboid container is considered. Instead of normal diffusion phenomenon, the anomalous diffusion phenomenon is incorporated which enhances the practicability of the model. The Fick's law is re-defined for the considering rectangular coordinate system in which information carrying molecules (ICMs) diffuse anomalously in the environment. The impact of flow of the fluid along the +x direction in the environment is also considered. Moreover, considering free propagator phenomenon, the expressions of spatio-temporal probability density function (PDF) of the ICMs is derived for the considered model. Further, the novel closed-form expressions for first arrival time density (FATD) of the ICM, survival probability (SP) at any time, and its corresponding first arrival probability (FAP) are also derived. Furthermore, the considered MC model is also analyzed in terms of minimum bit-error-rate (BER) using log-likelihood ratio test (LLRT) optimal detector. The derived expressions are verified using MATLAB based particle-based and Monte-Carlo simulations.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Anomalous Diffusion Phenomenon on Molecular Information Delivery in Bounded Environment.\",\"authors\":\"Lokendra Chouhan\",\"doi\":\"10.1109/TNB.2024.3467695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Through this paper, a three-dimensional molecular communication (MC) inside a cuboid container is considered. Instead of normal diffusion phenomenon, the anomalous diffusion phenomenon is incorporated which enhances the practicability of the model. The Fick's law is re-defined for the considering rectangular coordinate system in which information carrying molecules (ICMs) diffuse anomalously in the environment. The impact of flow of the fluid along the +x direction in the environment is also considered. Moreover, considering free propagator phenomenon, the expressions of spatio-temporal probability density function (PDF) of the ICMs is derived for the considered model. Further, the novel closed-form expressions for first arrival time density (FATD) of the ICM, survival probability (SP) at any time, and its corresponding first arrival probability (FAP) are also derived. Furthermore, the considered MC model is also analyzed in terms of minimum bit-error-rate (BER) using log-likelihood ratio test (LLRT) optimal detector. The derived expressions are verified using MATLAB based particle-based and Monte-Carlo simulations.</p>\",\"PeriodicalId\":13264,\"journal\":{\"name\":\"IEEE Transactions on NanoBioscience\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on NanoBioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1109/TNB.2024.3467695\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1109/TNB.2024.3467695","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Impact of Anomalous Diffusion Phenomenon on Molecular Information Delivery in Bounded Environment.
Through this paper, a three-dimensional molecular communication (MC) inside a cuboid container is considered. Instead of normal diffusion phenomenon, the anomalous diffusion phenomenon is incorporated which enhances the practicability of the model. The Fick's law is re-defined for the considering rectangular coordinate system in which information carrying molecules (ICMs) diffuse anomalously in the environment. The impact of flow of the fluid along the +x direction in the environment is also considered. Moreover, considering free propagator phenomenon, the expressions of spatio-temporal probability density function (PDF) of the ICMs is derived for the considered model. Further, the novel closed-form expressions for first arrival time density (FATD) of the ICM, survival probability (SP) at any time, and its corresponding first arrival probability (FAP) are also derived. Furthermore, the considered MC model is also analyzed in terms of minimum bit-error-rate (BER) using log-likelihood ratio test (LLRT) optimal detector. The derived expressions are verified using MATLAB based particle-based and Monte-Carlo simulations.
期刊介绍:
The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).