CSEL-BGC:整合机器学习的生物信息学框架,用于定义未表征抗菌天然产品的生物合成进化图谱。

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-09-30 DOI:10.1007/s12539-024-00656-5
Minghui Du, Yuxiang Ren, Yang Zhang, Wenwen Li, Hongtao Yang, Huiying Chu, Yongshan Zhao
{"title":"CSEL-BGC:整合机器学习的生物信息学框架,用于定义未表征抗菌天然产品的生物合成进化图谱。","authors":"Minghui Du, Yuxiang Ren, Yang Zhang, Wenwen Li, Hongtao Yang, Huiying Chu, Yongshan Zhao","doi":"10.1007/s12539-024-00656-5","DOIUrl":null,"url":null,"abstract":"<p><p>The sluggish pace of new antibacterial drug development reflects a vulnerability in the face of the current severe threat posed by bacterial resistance. Microbial natural products (NPs), as a reservoir of immense chemical potential, have emerged as the most promising avenue for the discovery of next generation antibacterial agent. Directly accessing the antibacterial activity of potential products derived from biosynthetic gene clusters (BGCs) would significantly expedite the process. To tackle this issue, we propose a CSEL-BGC framework that integrates machine learning (ML) techniques. This framework involves the development of a novel cascade-stacking ensemble learning (CSEL) model and the establishment of a groundbreaking model evaluation system. Based on this framework, we predict 6,666 BGCs with antibacterial activity from 3,468 complete bacterial genomes and elucidate a biosynthetic evolutionary landscape to reveal their antibacterial potential. This provides crucial insights for interpretating the synthesis and secretion mechanisms of unknown NPs.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CSEL-BGC: A Bioinformatics Framework Integrating Machine Learning for Defining the Biosynthetic Evolutionary Landscape of Uncharacterized Antibacterial Natural Products.\",\"authors\":\"Minghui Du, Yuxiang Ren, Yang Zhang, Wenwen Li, Hongtao Yang, Huiying Chu, Yongshan Zhao\",\"doi\":\"10.1007/s12539-024-00656-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sluggish pace of new antibacterial drug development reflects a vulnerability in the face of the current severe threat posed by bacterial resistance. Microbial natural products (NPs), as a reservoir of immense chemical potential, have emerged as the most promising avenue for the discovery of next generation antibacterial agent. Directly accessing the antibacterial activity of potential products derived from biosynthetic gene clusters (BGCs) would significantly expedite the process. To tackle this issue, we propose a CSEL-BGC framework that integrates machine learning (ML) techniques. This framework involves the development of a novel cascade-stacking ensemble learning (CSEL) model and the establishment of a groundbreaking model evaluation system. Based on this framework, we predict 6,666 BGCs with antibacterial activity from 3,468 complete bacterial genomes and elucidate a biosynthetic evolutionary landscape to reveal their antibacterial potential. This provides crucial insights for interpretating the synthesis and secretion mechanisms of unknown NPs.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00656-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00656-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

新抗菌药物的开发步伐缓慢,这反映出在当前细菌耐药性构成的严重威胁面前的脆弱性。微生物天然产物(NPs)蕴藏着巨大的化学潜力,已成为发现下一代抗菌剂的最有前途的途径。直接获取从生物合成基因簇(BGCs)中提取的潜在产品的抗菌活性将大大加快这一过程。为了解决这个问题,我们提出了一个整合了机器学习(ML)技术的 CSEL-BGC 框架。该框架包括开发一个新颖的级联堆叠集合学习(CSEL)模型和建立一个开创性的模型评估系统。基于这一框架,我们从 3468 个完整的细菌基因组中预测出了 6666 种具有抗菌活性的 BGCs,并阐明了生物合成进化景观,揭示了它们的抗菌潜力。这为解释未知 NPs 的合成和分泌机制提供了至关重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSEL-BGC: A Bioinformatics Framework Integrating Machine Learning for Defining the Biosynthetic Evolutionary Landscape of Uncharacterized Antibacterial Natural Products.

The sluggish pace of new antibacterial drug development reflects a vulnerability in the face of the current severe threat posed by bacterial resistance. Microbial natural products (NPs), as a reservoir of immense chemical potential, have emerged as the most promising avenue for the discovery of next generation antibacterial agent. Directly accessing the antibacterial activity of potential products derived from biosynthetic gene clusters (BGCs) would significantly expedite the process. To tackle this issue, we propose a CSEL-BGC framework that integrates machine learning (ML) techniques. This framework involves the development of a novel cascade-stacking ensemble learning (CSEL) model and the establishment of a groundbreaking model evaluation system. Based on this framework, we predict 6,666 BGCs with antibacterial activity from 3,468 complete bacterial genomes and elucidate a biosynthetic evolutionary landscape to reveal their antibacterial potential. This provides crucial insights for interpretating the synthesis and secretion mechanisms of unknown NPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
期刊最新文献
Adap-BDCM: Adaptive Bilinear Dynamic Cascade Model for Classification Tasks on CNV Datasets. CVGAE: A Self-Supervised Generative Method for Gene Regulatory Network Inference Using Single-Cell RNA Sequencing Data. Unraveling Brain Synchronisation Dynamics by Explainable Neural Networks using EEG Signals: Application to Dyslexia Diagnosis. Ensemble Machine Learning and Predicted Properties Promote Antimicrobial Peptide Identification. Viral Rebound After Antiviral Treatment: A Mathematical Modeling Study of the Role of Antiviral Mechanism of Action.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1