{"title":"scCrab:基于贝叶斯神经网络的参考引导癌细胞识别方法","authors":"Heyang Hua, Wenxin Long, Yan Pan, Siyu Li, Jianyu Zhou, Haixin Wang, Shengquan Chen","doi":"10.1007/s12539-024-00655-6","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a significant global public health concern, where early detection can greatly enhance curative outcomes. Therefore, the identification of cancer cells holds significant importance as the primary method for cancer diagnosis. The advancement of single-cell RNA sequencing (scRNA-seq) technology has made it possible to address the problem of cancer cell identification at the single-cell level more efficiently with computational methods, as opposed to the time-consuming and less reproducible manual identification methods. However, existing computational methods have shown suboptimal identification performance and a lack of capability to incorporate external reference data as prior information. Here, we propose scCrab, a reference-guided automatic cancer cell identification method, which performs ensemble learning based on a Bayesian neural network (BNN) with multi-head self-attention mechanisms and a linear regression model. Through a series of experiments on various datasets, we systematically validated the superior performance of scCrab in both intra- and inter-dataset predictions. Besides, we demonstrated the robustness of scCrab to dropout rate and sample size, and conducted ablation experiments to investigate the contributions of each component in scCrab. Furthermore, as a dedicated model for cancer cell identification, scCrab effectively captures cancer-related biological significance during the identification process.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scCrab: A Reference-Guided Cancer Cell Identification Method based on Bayesian Neural Networks.\",\"authors\":\"Heyang Hua, Wenxin Long, Yan Pan, Siyu Li, Jianyu Zhou, Haixin Wang, Shengquan Chen\",\"doi\":\"10.1007/s12539-024-00655-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer is a significant global public health concern, where early detection can greatly enhance curative outcomes. Therefore, the identification of cancer cells holds significant importance as the primary method for cancer diagnosis. The advancement of single-cell RNA sequencing (scRNA-seq) technology has made it possible to address the problem of cancer cell identification at the single-cell level more efficiently with computational methods, as opposed to the time-consuming and less reproducible manual identification methods. However, existing computational methods have shown suboptimal identification performance and a lack of capability to incorporate external reference data as prior information. Here, we propose scCrab, a reference-guided automatic cancer cell identification method, which performs ensemble learning based on a Bayesian neural network (BNN) with multi-head self-attention mechanisms and a linear regression model. Through a series of experiments on various datasets, we systematically validated the superior performance of scCrab in both intra- and inter-dataset predictions. Besides, we demonstrated the robustness of scCrab to dropout rate and sample size, and conducted ablation experiments to investigate the contributions of each component in scCrab. Furthermore, as a dedicated model for cancer cell identification, scCrab effectively captures cancer-related biological significance during the identification process.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00655-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00655-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
scCrab: A Reference-Guided Cancer Cell Identification Method based on Bayesian Neural Networks.
Cancer is a significant global public health concern, where early detection can greatly enhance curative outcomes. Therefore, the identification of cancer cells holds significant importance as the primary method for cancer diagnosis. The advancement of single-cell RNA sequencing (scRNA-seq) technology has made it possible to address the problem of cancer cell identification at the single-cell level more efficiently with computational methods, as opposed to the time-consuming and less reproducible manual identification methods. However, existing computational methods have shown suboptimal identification performance and a lack of capability to incorporate external reference data as prior information. Here, we propose scCrab, a reference-guided automatic cancer cell identification method, which performs ensemble learning based on a Bayesian neural network (BNN) with multi-head self-attention mechanisms and a linear regression model. Through a series of experiments on various datasets, we systematically validated the superior performance of scCrab in both intra- and inter-dataset predictions. Besides, we demonstrated the robustness of scCrab to dropout rate and sample size, and conducted ablation experiments to investigate the contributions of each component in scCrab. Furthermore, as a dedicated model for cancer cell identification, scCrab effectively captures cancer-related biological significance during the identification process.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.